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Summary. Questionnaires are important surveying tools that are used in numerous studies.
Analyses of multiple-response questions are not as well established in detail compared with
single-response questions. Wang has proposed several methods for ranking responses in
multiple-response questions under the frequentist set-up. However, prior information may exist
for ranks of responses in numerous situations.Therefore, establishing a methodology that com-
bines updated survey data and past information for ranking responses is an essential issue in
questionnaire data analysis. This study develops Bayesian ranking methods based on several
Bayesian multiple-testing procedures to rank responses by controlling the posterior expected
false discovery rate. Moreover, a simulation is conducted to compare these approaches, and a
real data example is presented to show the effectiveness of the methods proposed.
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1. Introduction

Questionnaires are a commonly used tool in numerous felds for collecting information, and they
are especially important for marketing or management studies. There are two types of question:
single-response questions and multiple-response questions. Response models that are related to
this issue have been discussed in Thissen and Steinberg (1984, 1986).

The analyses of multiple-response questions are not as deeply established as those for single-
response questions, and approaches for analysing multiple-response questions were inadequate
until recently (Umesh, 1995; Loughin and Scherer, 1998; Decady and Thomas, 1999; Bilder
et al., 2000; Agresti and Liu, 1999, 2001).

These studies have mainly focused on analysing the dependence between a single-response
question and a multiple-response question. In practice, the majority of researchers are interested
in ranking the responses to questions according to the probability of the response being chosen.
This ranking response issue may be the primary interest of survey analysis; thus, the issue of
ranking responses in a multiple-response question is the focus of this study.

We discuss the problem by the example provided by Wang (2008a); a company designs a
marketing survey to assist in the development of an insect killer. Several factors that can influence
sales are examined by implementing a questionnaire, including high quality, price, packaging
and smell. The researchers want to know the significance rank for these factors so that they can
design a product with lower cost and higher profit.

A group of individuals are surveyed regarding purchasing an insect killer by completing
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questionnaires. A multiple-response question from the questionnaire is as follows.

Question 1. Which factors are important to you when considering the purchase of an indoor
insect killer?: (1) price; (2) high quality; (3) packaging; (4) smell; (5) other.

Wang (2008a) proposed several approaches for solving this problem under the frequentist
set-up, i.e. the responses are ranked on the basis of only the current survey data. However,
empirical information may exist in real applications for the probabilities of the responses being
chosen. In this case, the Bayesian approach is more appropriate for analysing the data, which
can associate the current survey data with past information. The latter case is the focus of this
study, and this ranking issue is considered under the Bayesian framework.

For example, the British Household Panel Survey is a longitudinal study of individuals who
were living in private households in Great Britain. For a longitudinal survey, the current survey
data may be associated with past surveys, and the prior information may be available from
previous interviews. Examples and discussions regarding the panel survey are referred to in
Jenkins et al. (2006) and Jäckle and Lynn (2007) and Lynn et al. (2012). Related Bayesian
applications are referred to in Pammer et al. (2000).

Under the Bayesian framework, we assume that prior information regarding the parameter
space is available, and we rank the responses on the basis of a survey study and the prior
information. For a single-response question, respondents who select different responses are
independent; as a result the response ranking issue is associated with the usual Bayesian multiple-
testing problem that was presented by Muller et al. (2004). However, respondents who select
different responses in a multiple-response question may be dependent. Handling dependent
data is more challenging than handling independent data; thus, analysing multiple-response
questions is complex. In this paper, approaches based on Bayesian multiple-testing procedures
are proposed for ranking the responses to multiple-response questions.

These methodologies are an extension of the methods in Muller et al. (2004), who proposed
several criteria for Bayesian multiple testing. Miranda-Moreno et al. (2007) applied the method
from the study of Muller et al. (2004) to identify hot spots in engineering. Wang (2008b) involved
estimating the proportions in a multinomial distribution. Further details regarding Bayesian
multiple testing and applications have been discussed by Gopalan and Berry (1998), Do et al.
(2005), Gonen et al. (2003), Scott and Berger (2006), Muller et al. (2006, 2007) and Scott (2009).
Moreover, related studies regarding Bayesian ranking methods are referred to in Berger and
Deely (1988), where items are ranked on the basis of the posterior probability of the null
hypothesis or the Bayes factor. Furthermore, Lin et al. (2006) proposed the loss function
approach for ranking data. Although these methodologies provide rules for ranking, they do not
create rules to evaluate ranking errors. This study proposes a method for evaluating the ranking
error and applying the loss function method for the analysis of multiple-response questions.

The conventional Bayesian multiple-testing method involves calculating the posterior proba-
bility or the Bayes factor of the null hypothesis and rejecting or accepting the null hypothesis on
the basis of these calculations. The criterion for rejecting the null hypothesis involves determining
whether the posterior probability or the Bayes factor is larger compared with a specific critical
value. Critical value selection in the conventional method is normally independent of observa-
tions and the sample size. When the sample size is large, the posterior probability can be used to
reject or accept the null hypothesis with more confidence. When the sample size is more limited,
a stricter critical value for the posterior probability may be required to avoid large false discov-
ery rates. Because the conventional method does not assist in selecting a critical value based
on observations, it cannot guarantee the identification of an appropriate decision. The false
discovery rate procedure that has been proposed in the literature regarding Bayesian multiple
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testing is adopted in this study. The false discovery rate procedure is a statistical method that is
used for multiple-hypothesis testing and was designed to control the false discovery rate or false
negative rate. Further disscussions regarding the Bayesian false discovery rate procedure are
referred to in Muller et al. (2004). The Bayesian ranking property is also discussed in this study.

Wang (2008a) provided examples showing that the conventional testing approaches under the
frequentist framework do not provide ranking-consistent results. The ranking consistency rule
under the frequentist framework requires that the rank order of responses is consistent with the
selection order for each response. This property is a reasonable criterion for confirming the valid-
ity of the testing approach. However, under the frequentist framework, satisfactory approaches
for ranking responses with the property of ranking consistency have not yet been discovered. In
this study, we propose a Bayesian ranking consistency rule because the ranking consistency rule
under the frequentist approach cannot directly apply to the Bayesian framework. The methods
proposed are shown to have the Bayesian ranking-consistent property.

This paper is organized as follows. A Bayesian model for multiple-response questions is
discussed in Section 2. Several Bayesian multiple-testing procedures for testing the order of
responses are proposed in Section 3. In Section 4, a ranking criterion for ranking responses is
proposed, and the Bayesian multiple-testing procedures are shown to be consistent. Simulation
studies for comparing the rejection rates of various methodologies are presented in Section 5.
In addition, a real data example is provided in Section 6 for discussing the ranking consistency
property. Finally, a conclusion is given in Section 7.

2. Model

First, question 1 from Section 1 is used to illustrate the model and is extended to the gen-
eral model. In question 1 (multiple-response question), there are a total of 25 − 1 = 31 possi-
ble answers because the case that respondents do not select any response is excluded. The 31
random variables constitute a multinomial distribution with multinomial proportions p∈P =
{pi1i2i3i4i5 , ij =0 or ij =1 and 0<Σ5

j=1ij �5}, where ij cannot be simultaneously equal to 0. The
selection of at least one response is required for this multiple-response question. This require-
ment can prevent confusion with the missing value case. A questionnaire designer normally
provides an ‘other’ response when designing a multiple-response question, which includes all
other possible responses. This can prevent the scenario in which a respondent does not find any
suitable responses. If a multiple-response question does not include all possible responses, there
are two possible reasons for explaining why a respondent did not answer a question. One reason
is because no response is suitable for the respondent. The other reason is because the respondent
desires not to answer the question, which is the missing value case. There are various methods for
handling these two situations. To avoid confusing these two situations, a better method involves
including an other response and requiring respondents to select at least one response.

For the general case, assume that a multiple-response question has k responses, v1, . . . , vk, and
we interview n respondents. Each respondent is asked to choose at least one and at most s answers
for this question, where 0 < s � k. If s = 1, it is a single-response question. There are a total of c =
Ck

1 + . . . +Ck
s possible kinds of answer from which respondents can choose, whereCk

i =k!={i!.k−
i/!} is the number of ways of picking i unordered outcomes from k possibilities. Let ni1:::ik denote
the number of respondents selecting the responses vh and not selecting vh′ if ih = 1 and ih′ = 0.
Note that ih = 1 or ih = 0 denotes that the hth response is selected or not selected respectively.
And pi1:::ik denotes the corresponding probability that a respondent selects the item vh and does
not select the item vh′ if ih = 1 and ih′ = 0. For example, when k = 7, n0100100 denotes the number
of respondents selecting the second and the fifth responses and not selecting the other responses.
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Thus, the probability function of n ={ni1:::ik , ij =0 or ij =1 and 0 <Σk
j=1ij � s} is

fs.n|p/= I

(
0 <

k∑
j=1

ij � s

)
n!∏

ij=0 or 1
ni1:::ik !

∏
ij=0 or 1

p
ni1:::ik
i1:::ik

, .1/

where I.·/ denotes the indicator function. Let mj denote the sum of the number ni1:::ik such that
the jth response is selected, and let πj denote the corresponding probability, i.e. mj =Σij=1ni1:::ik

and πj =Σij=1pi1:::ik , where πj is called a marginal probability of response j.
Assume that we have a prior on the parameter space. Here we consider the conjugate prior

η.p/= I

(
0 <

k∑
j=1

ij � s

) Γ

( ∑
ij=0 or 1

αi1:::ik

)
∏

ij=0 or 1
Γ.αi1:::ik /

∏
ij=0 or 1

p
αi1:::ik
i1:::ik

, .2/

which is a Dirichlet distribution. In this study, the prior information is assumed to be known.
Under this set-up, we have the posterior distribution

η.p|n/=fs.n|p/η.p/

= I

(
0 <

k∑
j=1

ij � s

) Γ

{ ∑
ij=0 or 1

.αi1:::ik +ni1:::ik /

}
∏

ij=0 or 1
Γ.αi1:::ik +ni1:::ik /

∏
ij=0 or 1

p
αi1:::ik +ni1:::ik
i1:::ik

: .3/

Through the form of the posterior distribution, we can derive the Bayes estimator for each
pi1:::ik under the squared error loss function. The Bayes estimator π̂j of πj is equal to the
summation of the Bayes estimator of pi1:::ik , where ij =1. We can use the Bayes estimator of πj

to rank the significance of πj. Moreover, if we can associate a testing approach with the Bayes
estimator to rank πj, this method can lead to a more accurate result. Therefore, we intend to
establish a multiple-testing approach under a specific tolerance error to improve the accuracy
of the ranking result.

In real applications, we can obtain the prior information from past surveys. For example,
we revisit the example of question 1. The researchers can obtain the prior information for
this example from the past survey results about the marketing of an insect killer. To obtain a
Dirichlet prior (2), if we have past data from the survey for this multiple-responses question, we
can choose appropriate values for the parameters of prior (2) based on the data. Assume that m
respondents participated in the past survey and n respondents participate in the current survey.
The value of the parameter αi1:::ik in the Dirichlet distribution can be set to .mi1:::ik =m/n, where
mi1:::ik denotes the number of respondents selecting the responses vh and not selecting vh′ if ih =1
and ih′ =0 for the past data. In this way, the sum of αi1:::ik is equal to n, which leads to the equal
contribution of the past data and the current survey data. This equal weight contribution can
balance the past information and the current survey data in the statistical inference.

3. Testing approach

3.1. Multiple testing
In this section, we propose several multiple-testing methods for testing the relationship of πj.
Assume that there are k responses and we are interested in testing
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H01 :π2 �π1 versus H11 :π2 >π1,
H02 :π3 �π2 versus H12 :π3 >π2,

:::

H0k−1 :πk �πk−1 versus H1k−1 :πk >πk−1:

⎫⎪⎪⎬
⎪⎪⎭ .4/

It may be reasonable to test the hypothesis π1 = ::: =πk first, and then to proceed to test the
one-sided test when the hypothesis π1 = ::: =πk is rejected. The approach for testing a point null
hypothesis has been discussed by Berger (1985). It is necessary to assign a probability ξ0 to the
case H0 : π1 = ::: =πk and to spread out the probability of 1 − ξ0 on the alternative hypothesis
Hc

0 . Since the probability of the fact π1 = ::: = πk may be low, we do not investigate testing
the point null hypothesis in detail in this study. In addition, according to the ranking criterion
(10) that is used in this study, for ranking two responses πi and πj, both one-sided hypotheses
H0 : πi >πj and H0 : πj >πi are considered, which may reflect the information that is obtained
from the point null hypothesis.

For testing expressions (4), the decision rules that are considered here are to control the
posterior expected false discovery rate. The concept of the false discovery rate was proposed by
Benjamini and Hochberg (1995) to determine optimal thresholds for a multiple-testing setting.
For testing multiple hypotheses, the possible outcomes (over the l tests) may be summarized as
in Table 1.

We define the false discovery rate, posterior false discovery rate, false negative rate and poste-
rior false negative rate for the frequentist and Bayesian setting based on the literature as follows.

First, some notation and definitions are given. Let zi denote an indicator that the ith hypothesis
H0i is false and let ui =P.zi = 1|n/ denote the marginal posterior probability of πi+1 >πi. The
rejection of H0i is denoted by di = 1; otherwise di = 0. Let z = .z1, . . . , zk−1/ and d = .d1, . . . ,
dk−1/. Under the frequentist set-up, the false discovery rate and false negative rate are denoted
by the expectations E[V=.D+ "/] and E[T=.n−D+ "/] respectively, where D=Σk−1

i=1 di and " is
a small constant to avoid a zero denominator. In real applications, " can be chosen as 0.00001.

Let

FDR.d, z/=

k−1∑
i=1

di.1− zi/

D+ "

Table 1. Outcomes of multiple tests†

Real state Test result Number of
hypotheses

Number of Number of
H0i accepted H0i rejected

Number of true H0i U V l0
Number of false H0i T S l1

l−D D l

†The notation l is the total number of hypotheses, l0 is the unknown number of true
null hypotheses, l1 is the unknown number of false null hypotheses, V is the number
of false positive results, T is the number of false negative results, S is the number of
rejected null hypotheses that are false, U is the number of rejected null hypotheses that
are true and D is the number of rejected null hypotheses.
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denote the false discovery rate and

FNR.d, z/=

k−1∑
i=1

.1−di/zi

n−D+ "

the false negative rate.
Under a Bayesian setting, these error rates are defined as the posterior expected false discovery

rate denoted by FDR.d, n/ and the posterior expected false negative rate denoted as FNR.d, n/,
where

FDR.d, n/=

k−1∑
i=1

di.1−ui/

D+ "

and

FNR.d, n/=

k−1∑
i=1

.1−di/ui

n−D+ "
:

The posterior expected false discovery count FD.d, n/ and the posterior expected false
negative count FN.d, n/ are defined as

FD.d, n/=
k−1∑
i=1

di.1−ui/

and

FN.d, n/=
k−1∑
i=1

.1−di/ui:

3.2. Testing procedures
We here introduce several multiple-testing procedures from Berger (1985) and Muller et al.
(2004) for testing expressions (4).

3.2.1. Method 1
The decision to accept or reject the null hypothesis is based on the specific loss function that
was proposed by Berger (1985), which is defined as

0 if the decision taken is right,
c if we reject H0i when it is true,
1 if we accept H0i when it is false,

⎫⎬
⎭ .5/

where c .�0/ and 1 represent the losses for making a wrong decision because of a false positive
and a false negative error respectively. In this criterion, the loss function can be written as

LN.d, n/= c FD+FN: .6/

3.2.2. Method 2
The second method is to consider the loss function

LR.d, n/= c FDR+FNR:
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3.2.3. Method 3
We also consider bivariate loss functions that explicitly acknowledge the two competing goals,
leading to the following posterior expected losses:

L2R.d, n/= .FDR, FNR/:

We can define the optimal decisions under L2R as the minimization of FNR subject to FDR�
e2R.

From Muller et al. (2004), under the three loss functions, the optimal decision that minimizes
the loss functions takes the form

di = I.ui � t/, .7/

where t are tN = c=.c+1/, tR.n/=u.n−DÅ/ and t2R.n/=min{s : FDR.s, n/� e2R} under the loss
functions LN, LR and L2R respectively. In the expressions for tR and t2R, u.i/ is the ith order
statistic of {u1, . . . , un}, and DÅ is the optimal number of discoveries found by minimizing the
function .A:1/ in Muller et al. (2004). A simulation study for comparing the three methods is
given in Section 5.

The selections of c- and e2R-values in the loss functions may depend on the economic costs.
In the real applications, if we think that the false positive rate is more serious than the false
negative rate, then c can be selected to be larger than 1 or e2R is selected to be small. If we do
not consider selecting c and e from the real application viewpoint, we can consider the problem
in terms of the criterion of minimizing the penalty score that is proposed in Section 5.2. The
related discussion is given in Section 5.2.

By definition, ui in the model for the multiple-response questions can be expressed as pro-
portional to

∫
: : :

∫
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I

(
0 <

k∑
j=1

ij � s

)
I.πl+1 >πl/

Γ
( ∑

ij =0 or 1
αi1:::ik +ni1:::ik

)

Γ.αi1:::ik +ni1:::ik /

∏
ij =0 or 1

p
αi1:::ik +ni1:::ik
i1:::ik

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

× ∏
ij =0 or 1

dpi1:::ik , .8/

which may be difficult to calculate directly because it is a multiple integration. Instead of deriving
its exact value, we can approximate it by simulation or by using the normal approximation.

Theorem 1. By normal approximation, the multiple integration (8) can be approximated by

Φ.B=
√

C/, .9/

where Φ.x/ denotes the cumulative distribution function of the standard normal distribution,

A= ∑
ij =0 or 1

.αi1i2:::ik +ni1i2:::ik /,

B=

∑
il+1=1, il=0

.αi1i2:::ik +ni1i2:::ik /− ∑
il=1, il+1=0

.αi1i2:::ik +ni1i2:::ik /

A

and

C = 1
A2.A+1/

{ ∑
il+1=1,il=0

.αi1i2:::ik +ni1i2:::ik /.A−αi1i2:::ik −ni1i2:::ik /
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+ ∑
il=1,il+1=0

.αi1i2:::ik +ni1i2:::ik /.A−αi1i2:::ik −ni1i2:::ik /

+2
∑

i′
l+1=1,i′l=0

∑
i′′l =1,i′′

l+1=0
.αi′1i′2:::i′k +ni′1i′2:::i′k /.αi′′1 i′′2:::i′′k +ni′′1 i′′2:::i′′k /

⎫⎬
⎭:

The proof is given in Appendix A.
To evaluate the performance of cumulative distribution function (9), we conduct a simulation

to obtain the value of expression (8) and then compare it with the value of function (9). The
results show that these two values are very close. However, it is much more time consuming to
obtain expression (8) than to calculate function (9). Therefore, we conclude that function (9)
is a more efficient formula to obtain ui than expression (8) is. The R code for calculating ui by
function (9) and the data are available from

http://www.blackwellpublishing.com/rss

4. Ranking approach and ranking consistency

If not all of the hypotheses in expression (4) are rejected, there is not enough evidence to rank
all responses. An objective way to rank the responses is to test the hypothesis πi >πj for each
i and j. There are in total Ck

2 hypotheses for k responses. The rank of the ith response can be
defined as

Ri =k −
k∑

j=1,j �=i

I.πi >πj/: .10/

Using criterion (10), we define a response as the most significant if it has smallest Ri-value and
we rank it first. The response with second smallest Ri-value is defined as the second significant
response and so on.

By Wang (2008a), a reasonable ranking approach may need to satisfy the ranking consistency
property. The property is modified here to fit the Bayesian set-up as follows.

4.1. Bayesian ranking consistency property
A test is called ranking consistent if πj =πi is rejected by the test, and then πj =πg should also
be rejected by the test with the same level if the Bayes estimator of Iπj−πi>0 is less than the Bayes
estimator of Iπj−πg>0.

We provide Fig. 1 to illustrate the ranking consistency rule graphically. From the examples
that were given in Wang (2008a), under the frequentist framework, the tests that are derived by
the conventional approaches do not have the property of frequentist ranking consistency. It is
still unknown whether there are ranking-consistent tests under the frequentist framework. When
considering the problem under the Bayesian framework, it is easier to find the ranking-consistent
tests.

Theorem 2. The three testing procedures (7) that were considered in Section 3 for different
t-values under the loss functions LN, LR and L2R are ranking consistent.

Proof. For the three tests in Section 3, the decision rules of the tests are based on decision
(7). By this form, for a fixed cut-off t, the decision rule depends on only the Bayes estimator ui

of H0i. If a hypothesis H0i with a smaller ui is rejected, then a hypothesis H0j with a larger uj is
accordingly rejected by the rule. Thus, the proof is complete.
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(a) 

(b) 

Fig. 1. (a) Frequentist and (b) Bayesian ranking consistency rule for ranking three responses

5. Simulation result

5.1. Rejection rate
In this section, a simulation study is conducted to evaluate the performance of the three methods
in this section. We first set up a known prior of the form (2) on the parameter space. Let
wj =Σij=1 αi1:::ik , j = 1, . . . , k. The simulation procedure is first to generate a set of p from the
prior distribution, and then to use the p to generate a set of n. Next, calculate ui conditioning
on the n for the three different loss criteria. To test the k − 1 hypotheses of expressions (4), we
can count the number of rejections for the k − 1 hypotheses for the three methods. Although
the probability of the validity of the k − 1 hypotheses depends on p, by the property of the
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Dirichlet distribution, we have E [πi] < E [πj] if wi < wj: If we repeat the simulation procedure
many times, the number of rejections for the hypothesis H0i :πi+1 <πi of a good test should be
close to P.πi+1 >πi/. Thus, we can use this criterion to evaluate the testing methods. We repeat
the simulation process 1000 times and the results are shown in Tables 2 and 3.

Besides the evaluation of the rejection rates of one of the four subhypotheses, we also provide
the performance of the type I error and type II error of these methods for testing all the four null
subhypotheses. The type I error is the probability that the rejection decision is reached when
the generated p is under hypothesis H0 and the type II error is the probability that the rejection
decision is not reached when the generated p is under the alternative hypothesis Hc

0 . We present
the averages of type I error and type II error for the three methods in Table 4 and Table 5. The
calculation of the average of the type I error is first to generate p, satisfying all of the four null
subhypotheses, and to generate a set of n based on the p. We repeat the process 1000 times and
calculate the average of the rejection rate for the 1000 replicates, which is the average of the type
I error. The calculation of the average of type II error can be calculated similarly.

5.1.1. Example 1
Consider the case k =5 and a Dirichlet prior distribution on the parameter space with α00000 =
0, α00001 =98, α00010 =63, α00100 =42, α01000 =28, α10000 =28 and the others are equal to 7. In
this case, w1 = 133 = w2 < w3 = 147 < w4 = 168 < w5 = 203: Under this set-up, we have P.π2 >

π1/ = 0:500, P.π3 > π2/ = 0:859, P.π4 > π3/ = 0:930 and P.π5 > π4/ = 0:986. To test ex-
pressions (4), we compare the three methods that were introduced in Section 3. The rejection
rates for each method are listed in Table 2, where the c-values are 1 and 0.33 for LN and LR

Table 2. Rejection rates of the three methods corresponding to each hypothesis
in expressions (4) for 1000 replicates of example 1, where ‘true probability’ denotes
the true probability of rejecting the null hypothesis under the prior distribution

Method Rejection rates for the following hypotheses:

H01 :π2 �π1 H02 :π3 �π2 H03 :π4 �π3 H04 :π5 �π4

True probability 0.5 0.859 0.93 0.986
LN 0.529 0.942 0.981 0.999
LR 0.973 0.971 0.990 0.998
L2R 0.455 0.904 0.971 0.997

Table 3. Rejection rates of the three methods corresponding to each hypothesis
in expressions (4) for 1000 replicates of example 2, where ‘true probability’ denotes
the true probability of rejecting the null hypothesis under the prior distribution

Method Rejection rates for the following hypotheses:

H01 :π2 �π1 H02 :π3 �π2 H03 :π4 �π3 H04 :π5 �π4

True probability 0.709 0.701 0.695 0.690
LN 0.790 0.771 0.764 0.781
LR 0.892 0.894 0.881 0.881
L2R 0.605 0.617 0.601 0.631
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Table 4. Type I and type II errors as well as the
rejection rates of the three methods for testing H0 :
π2 �π1,π3 �π2,π4 �π3,π5 �π4 for 1000 replicates
of example 1

Method Rejection Type I Type II
rate error error

under H0† under Hc
0 †

LN 0.451 0.323 0
LR 0.925 0.938 0
L2R 0.350 0.236 0

†True probability of H0 = 0.347.

Table 5. Type I and type II errors as well as the
rejection rates of the three methods for testing H0 :
π2 �π1,π3 �π2,π4 �π3,π5 �π4 for 1000 replicates
of example 2

Method Rejection Type I Type II
rate error error

under H0† under H0
0 †

LN 0.254 0.262 0
LR 0.712 0.697 0
L2R 0.218 0.057 0.025

†True probability of H0 = 0.146.

and the e2R-value is 0.15 for L2R. The selection of the c- and e2R-values here is based on the
evaluation of the penalty score, which is introduced in Section 5.2.

In Table 4, the average of the type II error is denoted 0, which is the result based on 1000
replicates. The true type II error should be very close to 0 but not exactly equal to 0.

5.1.2. Example 2
Consider the case k=5 and a Dirichlet prior distribution on the parameter space with α00000 =0,
α00001 =56, α00010 =49, α00100 =42, α01000 =35, α10000 =28 and the others are equal to 7. In this
case, w1 =133<w2 =140<w3 =147<w4 =154<w5 =161. We have P.π2 >π1/=0:709, P.π3 >

π2/=0:701, P.π4 >π3/=0:695 and P.π5 >π4/=0:690. To test expressions (4), we compare the
three methods that were introduced in Section 3. The rejection rates for each method are listed
in Table 3, where the c-values are 1 and 0.54 for LN and LR and the e2R-value is 0.25 for L2R.

The performances of the three methods for testing each subhypothesis are provided in Tables
2 and 3. The method under the loss function LR seems worse than the other two methods
because its rejection rate is not close to the probability of the indicator function of the alternative
hypothesis in most cases. Overall, by comparing the rejection rates of the methods with the true
probability of rejecting the hypothesis, method 1 and method 3 may be superior to method 2 in
many cases, as shown in the simulation study.

From Tables 4 and 5, the performances of type I and II errors and the rejection rates of
the three methods for testing all the four subhypotheses are similar to the performance of the
rejection rates for testing one of the subhypotheses that are presented in Tables 2 and 3, which



12 H. Wang and W. H. Huang

50 10 15

1.
0

2.
0

3.
0

c

E
xp

ec
te

d 
P

en
al

ty
 S

co
re

(1,1.162)

50 10 15

1.
0

2.
0

3.
0

c

E
xp

ec
te

d 
P

en
al

ty
 S

co
re

(0.33,1.646)

0.2 0.4 0.6 0.8 1.0

1.
5

2.
5

3.
5

α2R

E
xp

ec
te

d 
P

en
al

ty
 S

co
re

(0.15,1.173)

(a)

(b)

(c)

Fig. 2. Expected penalty scores of the three methods under the conditions of example 1: (a) loss function
LN; (b) loss function LR; (c) loss function L2R

show that method 1 and method 3 are superior to method 2. In this study, we adopt the critical
rejection region that was suggested in Muller et al. (2004) for the three methods. Readers can
adjust the critical region to reach a required type I error or type II error.

It is worth noting that we also conducted a simulation study to investigate the robustness of
the three methods to the selection of the prior. In examples 1 and 2, the priors are assumed to be
known. When the true prior is not known and the prior selected is not far from the true prior,
the above comparison results of the three methods are similar to the known prior case. Thus,
unless the prior selected is far from the true prior, the results of the three methods discussed
above still hold.

5.2. Penalty score
In this section, we shall set up a penalty score to evaluate the three methods in terms of ranking
error. To rank the ith responses, for a given method, we need to calculate their Ri-values by using
this method and then to use the Ri-value to rank the responses. A penalty score is defined as the
summation of the absolute values of the difference between the true rank and the rank derived
by the method. For example, in the case k =5, if the true rank of the first response is 1, and the
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Fig. 3. Expected penalty scores of the three methods under the condition of example 2: (a) loss function
LN; (b) loss function LR; (c) loss function L2R

true rank of the second response is 2, etc. then we use the notation (1, 2, 3, 4, 5) to denote the
true rank. If the rank that is derived by a method for an observation is (2, 1, 3, 5, 4), the penalty
score for the method given by the observation is |1−2|+ |2−1|+ |3−3|+ |4−5|+ |5−4|=4.
We conduct a simulation for 1000 replicates to compare the expected penalty scores for the three
methods. The simulation procedure is as follows.

Step 1: set up a prior for α.
Step 2: generate a set of p from the prior distribution with respect to the α-value in step 1.
From this p, we can obtain a true rank for πi based on this p.
Step 3: using the probability mass function (1) with the p in step 2, generate a set n.
Step 4: set up the . k

2 / null hypotheses for any two different πi. Then, on the basis of n in step
3, calculate the Bayes estimator of the indicator function of each hypothesis. Then apply the
three methods in Section 3 to test each null hypothesis. Use expression (10) to rank the k
responses and calculate the penalty score from the rank derived and the true rank in step 2
for each method.
Step 5: repeat steps 2–4 1000 times. Take the average of the penalty scores in step 4 for each
method and the approximated expected penalty score for each method is derived.

Following the above procedures, the approximate expected score for the three methods can
be derived. Note that the scores for methods 1 and 2 depend on the value of c, and the score
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for method 3 depends on the value of e2R. In a real application, the selection of c in methods 1
and 2 may depend on the true cost of an incorrect decision and the selection of e2R in method
3 may depend on the tolerance error allowed. However, from a theoretical viewpoint, we can
investigate the situation of c and e2R such that the three methods have the smallest penalty score.

Based on the simulation procedures, the performance of the expected penalty score for dif-
ferent c and e2R corresponding to αi1···ik in examples 1 and 2 are presented in Figs 2 and 3.

The minimum expected penalty scores for methods 1–3 are 1.162, 1.646 and 1.173 in Fig. 2,
which occur at c = 1, c = 0:33 and e2R = 0:15 respectively. The minimum expected penalty
scores for methods 1–3 are 2.4323, 3.426 and 2.918 in Fig. 3, which occur at c=1, c=0:54 and
e2R = 0:25 respectively. Basically, Figs 1 and 2 show that method 1 has the smallest minimum
expected penalty scores, followed by method 3. Method 2 has the largest minimum expected
penalty scores, which lead to the worst performance of these three methods. From the viewpoint
of ranking, this consequence coincides with the results in Section 5.1. The reject rates for the
methods under the frequentist framework were presented in Wang (2008a).

Besides the priors that were used in examples 1 and 2, we conduct a simulation study to
investigate the c- and e2R-selection for other prior distributions as well. The simulation results
show that the penalty scores are smaller when c is selected to be close to 1 and 0.5 for the loss
functions LN and LR respectively, and e2R is selected to be close to 0.2 for the loss function
L2R. Therefore, if there are no other preferences, the c and e2R can be selected to be near the
values suggested above.

6. Real data example

A real data example is used in this section to illustrate the methods and to present a case
which is ranking inconsistent under the frequentist framework (Wang, 2008a) but is ranking
consistent under the Bayesian framework. This survey example is of 49609 first-year college
students in Taiwan regarding their preferences for college studies. The data set can be accessed
at http://www.stat.nctu.edu.tw/∼hwang/ranking.htm and is included in the
on-line supplementary file. A multiple-response question from the questionnaire is shown as
an example.

‘Question: What kind of experience do you expect to receive during the college study? (Select at least
one response)

1. Read Chinese and foreign classics
2. Travel around Taiwan
3. Present academic papers in conferences
4. Lead large-scale activities
5. Be on a school team
6. Be a student association leader
7. Participate in internship programs
8. Fall in love
9. Have sexual experience

10. Travel around the world
11. Make many friends
12. Other’

Ranking the responses of this multiple-response question according to student preferences
is of interest. To simplify the illustration, we do not consider the problem of ranking all the
responses. Only these five responses are ranked: read Chinese and foreign classics, present aca-
demic papers in conferences, lead large-scale activities, be on a school team and be a student
association leader.
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The whole data set of this survey included 49609 interview data. These data can be used to
obtain the true ranks of the five responses. To illustrate the methods, suppose that we do not
have the whole data set but only the interview data of 100 randomly selected respondents. From
the whole data set, the number of respondents who selected the five responses is 8858, 5358,
10578, 6823 and 12145. The first, second and third ranks indicate that the students prefer to
be a student association leader, to lead large-scale activities and to read Chinese and foreign
classics.

In this example, the notation i1 = 1, i2 = 1, i3 = 1, i4 = 1 and i5 = 1 in ni1i2i3i4i5 corresponds
to selection of the responses read Chinese and foreign classics, present academic papers in
conferences, lead large-scale activities, be on a school team and be a student association leader
respectively.

According to 100 randomly selected data, we have n10000 =19, n01000 =5, n00100 =7, n00010 =
6, n00001 = 10, n11000 = 3, n10100 = 0, n10010 = 0, n10001 = 5, n01100 = 1, n01010 = 0, n01001 = 1,
n00110 =0, n00101 =8, n00011 =2, n11100 =0, n11010 =1, n11001 =0, n01110 =0, n01101 =3, n01011 =0,
n00111 =8, n10110 =0, n10101 =7, n10011 =0, n11110 =0, n11101 =3, n11011 =1, n10111 =3, n01111 =3
and n11111 =4 for the 100 data. This leads to m1 =46, m2 =25, m3 =47, m4 =28 and m5 =58. Let
m.i/ denote the corresponding order statistics of mi. From the data, the most selected response is
be a student association leader. Next is lead large-scale activities, followed by read Chinese and
foreign classics. Consequently, we have m.5/ =58, m.4/ =47, m.3/ =46, m.2/ =28 and m.1/ =25.
Let π.i/ denote the marginal probability corresponding to the order statistic m.i/. Now we are
interested in testing

H01 :π.5/ �π.4/ versus H11 :π.5/ >π.4/,

H02 :π.5/ �π.3/ versus H12 :π.5/ >π.3/:
.11/

In this case, the likelihood ratio test does not lead to the rejection of the hypotheses. Thus,
we use the Wald and generalized score tests to illustrate the ranking inconsistency property.
When testing hypothesis H01, the values of the two test statistics with respect to the Wald test
and generalized score test under the frequentist framework are 2.17 and 2.12. The upper 0.025
cut-off point of the standard normal distribution is 1.96, resulting in the rejection of H01 by
the two tests with type I error 0.025. However, when testing hypothesis H02, the values of
statistics corresponding to the Wald test and generalized score test are 1.59 and 1.57, which do
not lead to the rejection of H02 in either of the two tests. Since |π.5/ −π.3/| > |π.5/ −π.4/|, the
above result leads to ranking inconsistency for the Wald and score tests under the frequentist
framework.

Now we consider the Bayesian framework and implement method 1, method 2 and method
3 for this example. According to the whole data set, we assume a prior for pi1i2i3i4i5 which
corresponds to α10000 = 13, α01000 = 4, α00100 = 8, α00010 = 5, α00001 = 11, α11000 = 3, α10100 =
2, α10010 = 1, α10001 = 3, α01100 = 1, α01010 = 0, α01001 = 1, α00110 = 1, α00101 = 10, α00011 = 3,
α11100 =0, α11010 =0, α11001 =0, α01110 =0, α01101 =2, α01011 =0, α00111 =6, α10110 =0, α10101 =
3, α10011 =1, α11110 =0, α11101 =1, α11011 =0, α10111 =2, α01111 =1 and α11111 =4.

In the real applications, we can estimate the prior or derive a prior from past experience.
To implement method 1 and method 2, we select c=1 and e2R =0:15 corresponding to method

1 and method 2, resulting in t = 0:5 and t = 0:01 with respect to the two methods. For testing
expression (11) under the given prior, we have u1 = 0:9949 and u2 = 0:9922. Consequently, by
expression (7), H01 and H02 are both rejected by the two methods.

In this case, the results show that the data leading to the conventional tests under the fre-
quentist framework are ranking inconsistent, and the methods proposed are ranking consistent
under the Bayesian framework.
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According to the simulation result, there is a proportion around 0.15 that the frequentist
ranking inconsistency phenomenon occurs. The theoretical investigation of the occurrence of
ranking inconsistency is still understudied. We also provide a frequentist ranking consistency
sample for this example as follows.

We have 100 randomly selected data with n10000 =14, n01000 =3, n00100 =4, n00010 =6, n00001 =
13, n11000 = 4, n10100 = 2, n10010 = 0, n10001 = 7, n01100 = 0, n01010 = 0, n01001 = 4, n00110 = 1,
n00101 =13, n00011 =2, n11100 =3, n11010 =1, n11001 =1, n01110 =0, n01101 =1, n01011 =0, n00111 =
4, n10110 = 1, n10101 = 1, n10011 = 3, n11110 = 0, n11101 = 0, n11011 = 1, n10111 = 3, n01111 = 5 and
n11111 = 3 for the 100 data. These lead to m1 = 44, m2 = 26, m3 = 41, m4 = 30 and m5 = 61.
Consequently, we have m.5/ =61, m.4/ =44, m.3/ =41, m.2/ =30 and m.1/ =26.

To test

H01 :π.5/ �π.4/ versus H11 :π.5/ >π.4/,

H02 :π.5/ �π.3/ versus H12 :π.5/ >π.3/,
.12/

the two statistics values for the Wald test and generalized score test under the frequentist frame-
work are 2.12 and 2.08, resulting in the rejection of hypothesis H01 by the two tests with type I
error 0.025. When testing hypothesis H02, the values of statistics corresponding to the Wald test
and generalized score test are 3.24 and 3.09, which also lead to the rejection of H02 in either of
the two tests. The above sample leads to ranking consistency for the Wald and score tests under
the frequentist framework.

7. Conclusions

This study establishes Bayesian multiple-testing procedures under the false discovery rate and
loss functions criteria for investigating the ranking of responses in a multiple-response question.
The test statistic is based on the posterior probability, and an approximate formula for the
posterior probability is provided.

The simulation study indicates that the use of the loss functions LN and L2R is better than that
of the loss function LR if we consider cases where c and e2R are selected so that the minimum
expected penalty score occurs. However, in real applications, selection of the constant c in LN
and LR may depend on empirical information or economic costs, which may be determined by
an experienced manager. The same is true for the selection of e2R. The set-up of e2R may depend
on the allowed tolerance error in real applications because e2R provides a tolerance error for
the false discovery rate.

This study also proposes an approach for ranking the responses of multiple-response questions
under the Bayesian framework based on multiple-testing procedures. Conventional tests under
the frequentist set-up do not have the ranking consistency property. Compared with methods
under the frequentist framework, this Bayesian approach provides more convincing results
because it has the Bayesian ranking consistency property.

This method can be applied to numerous other applications such as medical, social and
psychological studies. Another important issue for analysing the multiple-response question is
regarding the correlations between a multiple-response question and a single-response ques-
tion or between two multiple-response questions. Future studies may propose approaches for
exploring the association between two questions under the Bayesian framework.
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Appendix A: Proof of theorem 1

In this proof, we derive the normal approximation formula for the multiple integration.
For a given n, let A =Σij=0 or 1.αi1i2:::ik + ni1i2:::ik /. From the property of the Dirichlet distribution, we

have the expectation and variance of pi′1i′2:::i′
k

equal to

αi′1i′2:::i′
k
+ni′1i′2:::i′

k

A

and

.αi′1i′2:::i′
k
+ni′1i′2:::i′

k
/.A−αi′1i′2:::i′

k
−ni′1i′2:::i′

k
/

A2.A+1/

respectively.
The covariance of pi′1i′2:::i′

k
and pi′′1 i′′2:::i′′

k
is equal to

−.αi′1i′2:::i′
k
+ni′1i′2:::i′

k
/.αi′′1 i′′2:::i′′

k
+ni′′1 i′′2:::i′′

k
/

A2.A+1/
:

Note that πl+1 − πl = πl+1 − π.l+1/l − .πl − π.l+1/l/, where πjl = Σij=il=1pi1:::ik denotes the corresponding
probability that both the jth and the lth responses are selected.

Therefore, from the above facts and straightforward calculation, the expectation of πl+1 − πl can be
rewritten as

E[πl+1 −πl]=E[.πl+1 −π.l+1/l/− .πl −π.l+1/l/]
=B

and the variance of πl+1 −πl can be rewritten as

var.πl+1 −πl/=var{.πl+1 −π.l+1/l/− .πl −π.l+1/l/}
=var.πl+1 −π.l+1/l/+var.πl −π.l+1/l/−2 cov{.πl+1 −π.l+1/l/.πl −π.l+1/l/}
=C: .13/

Since the Dirichlet distribution belongs to the multiparameter exponential family (Bickel and Doksum,
2007), by the property of the exponential family, we can apply the central limit theory to obtain the normal
approximation,

πl+1 −πl ∼N.B,
√

C/:

Thus, we have

vl =P.πl+1 −πl > 0/

=P

{
πl+1 −πl −E[πl+1 −πl]√

var.πl+1 −πl/
>

−E[πl+1 −πl]√
var.πl+1 −πl/

}

=P

{
Z>

−E[πl+1 −πl]√
var.πl+1 −πl/

}

=Φ
{

E[πl+1 −πl]√
var.πl+1 −πl/

}
.14/

The proof is complete.
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