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Abstract

Tolerance intervals (TIs) are widely used in various applications including

manufacturing engineers, clinical research, and pharmaceutical industries. TIs

can be used to construct limits of control charts for monitoring quality charac-

teristics. For manufacturing processes where multiple factors may contribute

to defects or multiple-stream processes, a mixture distribution of several suit-

able probabilistic models may be a better choice than a simple distribution for

modeling the data. TIs for the normal mixture distribution have been studied

in the literature. This article reviews the TIs of the normal mixture distribu-

tion, the applications of the mixture distribution, and the control charts of the

mixture distribution. A rule for constructing modified two-sided TIs of the nor-

mal mixture distribution is summarized, and this rule may be extended to con-

struct modified two-sided TIs for general mixture distributions. The feasibility

of using TIs to build control charts for mixture distributions is also discussed.

A real data example of coronavirus disease 2019 is used to illustrate the

method by linking the TI to control charts.
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1 | INTRODUCTION

A tolerance interval (TI) is a method to cover a fixed proportion of the population with a specified confidence level
(Meeker et al., 2017). Compared with other types of interval estimation, TIs are not as well-known as confidence inter-
vals, which are widely used in statistical inference to cover population parameters with a specified confidence level.
Confidence intervals are a very useful tool for parameter estimation of parametric distributions (Brown et al., 2001;
Short, 2021; Wang, 2008) when the estimated target is a point. However, sometimes the characteristic of interest is an
enclosure interval rather than a point, in which case TI can be a very useful tool for estimating this specific enclosure
interval.

TIs have various applications in pharmaceutical industries and quality control. In pharmaceutical industries, three
tests including the dose content uniformity, delivered dose uniformity, and dissolution tests are important tools for the
assessment of pharmaceutical quality (Rahman et al., 2021; Tsong et al., 2015; Wang, 2007). The TI approach can be
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applied to set the decision rules of these tests (Dong et al., 2015). The endpoints of a TI are called tolerance limits.
An application of TIs in manufacturing involves comparing customer-specified specification limits with tolerance
limits (Little, 2016). The proportion of nonconforming parts of the population is a quantity of interest in manufacturing.
A TI-based calculation approach was proposed to investigate the proportion of nonconforming parts (Pusztai &
Kemény, 2020).

There are different types of TI under the frequentist and Bayesian frameworks. The methods for constructing TIs
and sample size determination of TIs for the normal distribution date back to the 1940s (Wald, 1943; Wald &
Wolfowitz, 1946; Wilks, 1941, 1942). The sample size determination for the two-sided TIs controlling both tails of the
normal distribution was investigated (Chou & Mee, 1984). The earlier studies on constructing tolerance limits for the
parametric continuous and discrete univariate distributions have been reviewed including the normal, exponential,
Weibull, generalized gamma, Cauchy, logistic, Poisson, binomial, and negative-binomial (Patel, 1986). The construction
of TIs for discrete variables has been critical in industrial applications. The calculation of the exact minimum coverage
probabilities of TIs for Poisson and binomial variables was studied (Wang & Tsung, 2009), and the Edgeworth expan-
sion was used to construct desirable TIs for Poisson and binomial variables (Cai & Wang, 2009). The widely-used TIs
for common continuous and discrete distributions were introduced in books (Krishnamoorthy & Mathew, 2009; Meeker
et al., 2017). The tolerance limits for common distributions can be calculated using R or Matlab software (Young, 2010).
This paper reviews TIs for the mixture distribution under the frequentist framework.

The rest of this paper is organized as follows. In Section 2, different types of TI are introduced, and the related stud-
ies are reviewed. Section 3 reviews the mixture distributions and their applications. Section 4 reviews the methods for
constructing TIs of the normal mixture distribution and summarizes a rule for constructing modified two-sided TIs that
may be extended to general mixture distributions. In Section 5, control charts for the mixture distribution are reviewed.
The potential of using TIs to build control limits for general mixture distributions is discussed. A real data example
using the coronavirus disease 2019 (COVID-19) data to illustrate the procedure of constructing TI for the normal mix-
ture distribution, and the connection of TI to the control chart is provided in Section 6. Finally, Section 7 summarizes
the main points of this paper.

2 | TYPE OF TOLERANCE INTERVAL

There are different types of TI. Under the frequentist framework, there are usually two typical types of TIs:
β-content TI and β-expectation TI, where β denotes a proportion between 0 and 1 (Krishnamoorthy & Mat-
hew, 2009; Mee, 1984).

2.1 | β-Content TI

An interval L� Xð Þ,U� Xð Þð Þ is said to be a two-sided β-content, 1�α confidence TI, denoted by β,1�αð Þ TI, for F if

P F U� Xð Þð Þ�F L� Xð Þð Þ½ �≥ β½ � ¼ 1�α,

where X is a random variable with a distribution function F. One-sided tolerance limits can be defined in a similar
way. A tolerance limit L Xð Þ is said to be a lower β,1�αð Þ tolerance limit for F if P 1�F L Xð Þð Þ½ �≥ βf g¼ 1�α, and a tol-
erance limit U Xð Þ is said to be an upper β,1�αð Þ tolerance limit for F if P F U Xð Þð Þ½ �≥ βf g¼ 1�α.

2.2 | β-Expectation TI

An interval LE Xð Þ,UE Xð Þð Þ is said to be a two-sided β-expectation TI for F if

Exp F UE Xð Þð Þ�F LE Xð Þð Þ½ � ¼ β
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In addition to the TIs constructed under the frequentist framework, TIs under the Bayesian framework have been
proposed. Let π θð Þ denote a prior distribution for θ and π θjxð Þ be the posterior distribution of θ. An interval
LB θð Þ,UB θð Þð Þ is said to be a β,1�αð Þ Bayesian TI if

PθjX F UB θð Þð Þ�F LB θð Þð Þ½ �≥ β½ � ¼ 1�α

(Krishnamoorthy & Mathew, 2009; Young et al., 2016).
Moreover, an equal-tailed β,1�αð Þ TI L0 Xð Þ,U 0 Xð Þð Þ is widely used in applications that controls the percentages in

both tails ensuring that no more than a proportion 1�βð Þ=2 of the population is below the lower tolerance limit and no
more than a proportion 1�βð Þ=2 of the population is above the upper tolerance limit with a confidence level 1�α. In
this interval, L0 Xð Þ and U 0 Xð Þ can be set to be a lower 1�βð Þ=2,1�αð Þ tolerance limit and an upper 1þβð Þ=2,1�αð Þ
tolerance limit, respectively. The equal-tailed β,1�αð Þ, β-expectation, and Bayesian TIs have been discussed for various
distributions (Guo et al., 2021; Hoang-Nguyen-Thuy & Krishnamoorthy, 2021; Liu et al., 2021). There may be a need to
weigh the two-tail probabilities of a TI when the cost of failing to detect larger (smaller) values is higher than the cost
of failing to detect smaller (larger) values. Two-sided TIs with equal or unequal tail probabilities, also known as bal-
anced or unbalanced TIs, could be chosen depending on the objective at hand, and both might have their place in prac-
tice (Alqurashi et al., 2023).

In addition to the parametric continuous and discrete univariate distributions, TIs for censored data have been studied.
Exact methods for constructing TIs using pivotal quantities under complete or censored data for symmetric distributions in
the location-scale family were proposed (Krishnamoorthy & Xie, 2011). The problem of computing two-sided TIs and equal-
tailed TIs for a location-scale family of distributions was investigated (Hoang-Nguyen-Thuy & Krishnamoorthy, 2021). Yuan
et al. developed a general procedure to compute the exact factors of TIs for both symmetric and nonsymmetric distributions
in the log-location-scale family, based on complete or censored data (Yuan et al., 2018). Approximate tolerance limits under
the log-location-scale regression models in the presence of censoring were proposed, and a bias-correction technique via the
jackknife method was applied to improve small sample accuracy (Emura & Wang, 2010).

TIs for more applications have been established including combing different types of data, record value data, and a
mixture of different populations. TIs based on the combination of high-resolution and low-resolution data were pro-
posed (Wang & Tsung, 2017). In many cases, only record values can be observed, and an exact two-sided TI based on
record values for the exponential distribution was constructed (Guo et al., 2020). The equal-tailed and shortest Bayesian
TIs that could control percentages in both tails of the exponential distribution based on k-record values were built
(Kiapour & Qomi, 2017). Simultaneous tolerance limits and TIs for several normal populations with a common
unknown variance were proposed (Krishnamoorthy & Chakraberty, 2022). Zoom-in and quasi-independent procedures
for estimating TIs of discrete-time and covariance-stationary stochastic processes having a continuous marginal distri-
bution with some autocorrelation property were proposed (Chen & Kelton, 2006).

The normal mixture distribution is more suitable than the normal distribution to fit the data in many applications
including audio signal recognition and sports data clustering (Andriyanov, 2020; Wang, 2021). Tolerance limits for the
normal mixture distribution have been constructed (Zimmer et al., 2016). Further, the one-sided and two-sided TIs
based on the bootstrap and sample quantile methods for the mixture of normal distributions were proposed (Chen &
Wang, 2020a). This paper focuses on the review of the β-content TI for the normal mixture distribution.

3 | MIXTURE DISTRIBUTION

Let X1,…,Xn be a random sample following a k-component mixture distribution F with the probability density function
[Equation (1)]

f θ xð Þ¼
Xk
j¼1

pjgj x,η
j

� �
, �∞< x<∞ ð1Þ

where gj x,η
j

� �
denotes a specific distribution with parameter η

j
, pj denotes the weight of the jth component, andPk

j¼1pj ¼ 1. When gj x,η
j

� �
is the normal distribution, F is the normal mixture distribution, also known as the Gaussian

mixture distribution.
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The normal mixture distribution has been successfully used to model various real data. Wireless channels were ana-
lyzed and modeled by the mixture of normal distributions (Selim et al., 2016). Brain tumor features were extracted from
magnetic resonance imaging using the normal mixture models (Chaddad, 2015). An automatic railway visual detection
system for railway surface defects based on a combined filter and improved normal mixture model method could not
only improve the detection ability for faint defects, but also reduce the processing time cost (Zhang et al., 2018). In addi-
tion to the normal mixture distribution, other mixture distributions are also useful tools for analyzing various data
problems. A mixture Gamma distribution was used to model the signal-to-noise ratio of wireless channels and analyze
physical layer security problems (Atapattu et al., 2011; Lei et al., 2016). The insurance claims data were modeled by a
mixture of exponential distributions (Lee et al., 2012). A Poisson mixture model was proposed to cluster count-based
digital gene expression profiles (Rau et al., 2015). A binomial mixture distribution was adopted to model the number of
credits gained by university freshmen during the first year (Grilli et al., 2015).

The maximum likelihood estimator (MLE) is usually used to estimate the parameters of the normal mixture distri-
bution, and the expectation–maximization (EM) algorithm is a widely-used method to derive the MLE of the normal
mixture distribution (McLachlan & Peel, 2000). However, it suffers from the local maxima problem and the initializa-
tion dependence problems. Methods to improve the EM algorithm for mixture distributions have been widely discussed
(Scrucca, 2021; Xiang et al., 2020). In many applications, the components of a mixture distribution are skewed or
heavy-tailed. The parameter estimation of a mixture of skewed distributions via the EM algorithm was proposed
(Castillo-Barnes et al., 2020).

4 | TOLERANCE INTERVAL ON MIXTURE DISTRIBUTIONS

4.1 | Distribution-free tolerance interval

For mixture distributions, it is difficult to derive simple formulas for approximate or exact TIs. The distribution-free TI
based on a nonparametric method can be applied in the mixture distributions. Let X 1ð Þ, � � �,X nð Þ denote the order statis-
tics of Xi, i¼ 1, � � �,n. An interval X rð Þ,X sð Þ

� �
is said to be a β,1�αð Þ distribution-free TI if r and s satisfy

P Y ≤ s� r�1ð Þ≥ 1�α, where Y follows a binomial distribution Bin n,βð Þ (Krishnamoorthy & Mathew, 2009).
The distribution-free TI does not have a good performance for the normal mixture distribution when the sample size

is small. The coverage probability (CP) of the distribution-free TI has been studied (Chen & Wang, 2020a). The CPs of
the (0.99, 0.95) one-sided and two-sided distribution-free TIs for several normal mixture models when the sample size is
20, 100, and 200 were tabulated in Table 1. These CPs are much lower than the nominal level of 0.95.

4.2 | One-sided tolerance limit for the mixture normal distribution

As shown in Table 1, the performance of the distribution-free TI is not satisfactory when the sample size is small. Since
the distribution-free TI is based on the nonparametric method, TIs constructed by a parametric method can be expected

TABLE 1 Coverage probabilities of the (0.99, 0.95) distribution-free upper tolerance limits and TIs for the normal mixture distribution

(Chen & Wang, 2020a).

Models Sample size
CP of the upper
tolerance limit

CP of the
two-sided TI

1
3N 0,1ð Þþ 2

3N 0:5,1ð Þ 20
100
200

0.173
0.634
0.864

0.021
0.263
0.596

1
2N 0,1:2ð Þþ 1

2N 4,1:5ð Þ 20
100
200

0.183
0.637
0.869

0.017
0.267
0.601

1
4N 0,1ð Þþ 1

2N 1,1ð Þþ 1
4N 2,1ð Þ 20

100
200

0.182
0.633
0.868

0.022
0.268
0.597
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to have better performance than the distribution-free TI. A bootstrap-based method was proposed to construct the TI
for the normal mixture distribution (Chen & Wang, 2020a). In general, the bootstrap method is preferred over the
distribution-free method unless the components of the mixture distribution have a large overlap because the EM algo-
rithm may not precisely converge to the true parameter value. However, the bootstrap-based method relies on heavy
calculation. Another method based on the asymptotic distribution of the sample quantile was proposed to construct TIs
for the normal mixture distribution (Chen & Wang, 2020a). Let qr and bqr denote the rth quantile and its MLE of the
normal mixture distribution, respectively. The empirical distribution based on a sample X1, � � �,Xn is defined as [Equa-
tion (2)]

Fn xð Þ¼ 1
n

Xn
i¼1

I Xi ≤ xð Þ ð2Þ

The rth sample quantile of Fn xð Þ is defined as [Equation (3)]

eqr �F�1
n rð Þ¼ inf tjFn tð Þ≥ rf g: ð3Þ

An asymptotic distribution of eqr has the form:ffiffiffi
n

p eqr �qrð Þ!N 0, r 1�rð Þ
f θ qrð Þ2

� �
(Serfling, 2009)
The upper and lower β,1�αð Þ tolerance limits derived by the sample quantile method are [Equations (4) and (5)]

U ¼eqβþ z1�α
β 1�βð Þ
nfbθ bqβ� �2

0
B@

1
CA

1
2

ð4Þ

and

L¼eq1�β� z1�α
β 1�βð Þ

nfbθ bq1�β

� �2

0
B@

1
CA

1
2

, ð5Þ

respectively, where bθ is MLE of (1). These tolerance limits based on the sample quantile method are easier to be calcu-
lated and have better performance than the bootstrap-based method (Table 2) (Chen & Wang, 2020a).

Tolerance limits for the mixture normal distribution can also be constructed from the perspective of confidence
intervals for percentiles (Zimmer et al., 2016). Percentiles are descriptions of quantiles relative to 100. An upper
β,1�αð Þ tolerance limit is a 100 1�αð Þ% upper confidence limit for the 100�βth percentile of the distribution. Let bξβ
denote the MLE of the 100�βth percentile ξβ of the normal mixture distribution. A 100 1�αð Þ% upper confidence limit
for ξβ was obtained using the asymptotic normality of bξβ, where the asymptotic standard error of bξβ was obtained by the
delta method (Zimmer et al., 2016). An algorithm for obtaining an upper tolerance limit was provided by Zimmer et al.
(2016) (Zimmer et al., 2016). A simulation study showed that the CP of this upper confidence limit for ξβ is close to the
nominal level for some models (Table 3) (Zimmer et al., 2016).

4.3 | Two-sided tolerance interval for the normal mixture distribution

To construct two-sided TIs, it is common that the two-sided interval is built from both the upper and the lower toler-
ance limits. The upper or lower tolerance limits constructed by the quantile or sample quantile methods in both papers
have good performance in terms of the CP (Chen & Wang, 2020a; Zimmer et al., 2016). But the two-sided TI directly
constructed by the upper and lower tolerance limits did not have a satisfactory result (Chen & Wang, 2020a). Zimmer
et al. (2016) only presented the upper tolerance limit case and did not mention the two-sided TI case. It can be expected

WANG 5 of 14

 19390068, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
ics.1611 by H

siuying W
ang - N

ational Y
ang M

ing C
hiao T

ung U
nive , W

iley O
nline L

ibrary on [04/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



that the two-sided TI case directly implemented using the tolerance limits cannot achieve a good result. A modified
method was proposed to construct two-sided TIs and this method could have a significant improvement (Chen &
Wang, 2020a).

This modified method uses one of the two one-sided tolerance limits as a tolerance limit first, and then adjusts the
other one. For example, the conventional tolerance limits of a β,1�αð Þ two-sided TI built from the formulas (4) and (5)
of one-sided tolerance limits are [Equations (6) and (7)]

U� ¼eqβU þ z1�α=2
βU 1�βUð Þ
nfbθ bqβU� �2

0
B@

1
CA

1
2

ð6Þ

and

L� ¼eqβL � z1�α=2
βL 1�βLð Þ
nfbθ bqβL� �2

0
B@

1
CA

1
2

, ð7Þ

TABLE 2 Coverage probability of the (0.99, 0.95) upper tolerance limits for the mixture normal distribution (Chen & Wang, 2020a).

Model Sample size
Bootstrap method Sample quantile method
CP for the upper limit CP for the upper limit

1
3N 0,1ð Þþ 2

3N 0:5,1ð Þ 20 N 0.701

100 0.807 0.939

200 0.854 0.948

400 0.925 0.951

1000 0.929 0.956

1
2N 0,1:2ð Þþ 1

2N 4,1:5ð Þ 20 0.801 0.759

100 0.904 0.958

200 0.913 0.955

400 0.945 0.959

1000 0.943 0.957

1
4N 0,1ð Þþ 1

2N 1,1ð Þþ 1
4N 2,1ð Þ 20 N N

100 0.766 0.901

200 0.815 0.918

400 0.897 0.933

1000 0.912 0.939

Note: “N” denotes that the EM algorithm does not converge.

TABLE 3 Coverage probabilities of the (0.99, 0.99) upper tolerance limit for the mixture normal distribution (Zimmer et al., 2016).

Model Sample size
CP of the upper
tolerance limit

1
5N 5,0:5ð Þþ 4

5N 9,1ð Þ 40
100

0.9840
0.9880

3
10N 1100,130ð Þþ 7

10N 1650,155ð Þ 40
100

0.972
0.987

7
10N 1100,130ð Þþ 3

10N 1650,155ð Þ 40
100

0.938
0.979

6 of 14 WANG

 19390068, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
ics.1611 by H

siuying W
ang - N

ational Y
ang M

ing C
hiao T

ung U
nive , W

iley O
nline L

ibrary on [04/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where βU ¼ 1þβð Þ=2 and βL ¼ 1�βð Þ=2. Then we can use L� as a lower limit of the modified two-sided TI, and modify
the upper tolerance limit to be

eqβ�U þ z1�α=2
β�U 1�β�U

� �
nfbθ bqβ�U

� �2

0
B@

1
CA

which replaces βU ¼ 1þβð Þ=2 with β�U ¼Fbθ L�ð Þþβ in (6). This modification method adjusts the upper limit or lower
limit such that the two-sided interval can cover β proportion of the population. By a similar argument, this method can
use (6) as an upper tolerance limit and replace βL ¼ 1�βð Þ=2 by β�L ¼Fbθ U�ð Þ�β in (7). Although this modified method
has only been studied for the normal mixture distribution in the literature, it may be applied to general mixture distri-
butions. Procedures 1 and 2 summarize this modified method. The feasibility of applying this method to general mix-
ture distributions needs to be verified by future studies.

Procedure 1. Construct a level β,1�αð Þ two-sided TI for the mixture distribution F by adjusting the upper
tolerance limit.

Step 1: Find the MLE bθ of the parameter θ.
Step 2: Construct a level 1�βð Þ=2,1�αð Þ lower tolerance limit L�1.
Step 3: Let β1 ¼Fbθ L�1

� �þβ. If β1 is greater than 1, then set β1 to 1.
Step 4: Construct a level β1,1�α=2ð Þ upper tolerance limit U�

1.
Step 5: The interval L�

1,U
�
1

� �
is the modified two-sided TI.

Procedure 1 is the method to construct a two-sided TI by first using a level 1�βð Þ=2,1�α=2ð Þ lower tolerance limit,
and then adjusting the upper tolerance limit. Similarly, this method can first fix a level 1þβð Þ=2,1�α=2ð Þ upper toler-
ance limit, and then adjust the lower tolerance limit as stated in Procedure 2.

Procedure 2. Construct a level β,1�αð Þ two-sided TI for mixture distribution F by adjusting the lower tol-
erance limit.

Step 1: Find the MLE bθ of the parameter θ.
Step 2: Construct a level 1þβð Þ=2,1�α=2ð Þ upper tolerance limit U�

2.
Step 3: Let β2 ¼Fbθ U�

2

� ��β. If β2 is less than 0, then set β2 to 0.
Step 4: Construct a level β2,1�α=2ð Þ lower tolerance limit L�2.
Step 5: The interval L�

2,U
�
2

� �
is the modified two-sided TI.

A more detailed algorithm by applying Procedure 1 with Equations (6) and (7) for the normal mixture distribution
is provided in Algorithm 1.

Algorithm 1. Use Equations (6) and (7) to construct a level β,1�αð Þ two-sided TI for the normal mixture
distribution by adjusting the upper tolerance limit.

Step 1: Fit data with a normal mixture distribution. Use the EM algorithm to find the MLE bθ of the parameter θ.
Step 2: Calculate the empirical distribution from the data using Equation (2). Find the 1�βð Þ=2th sample quantileeq1�β

2
from this empirical distribution.

Step 3: Find the 1�βð Þ=2th quantile bq1�β
2
of the fitted normal mixture distribution, and then calculate the value of

the density function fbθ bq1�β
2

� �
of this fitted normal mixture distribution at this quantile value bq1�β

2
.

Step 4. Using the values calculated in Steps 2 and 3 and Equation (7), a level 1�βð Þ=2,1�α=2ð Þ lower tolerance
limit L�

1 can be obtained.
Step 5. Let β1 ¼Fbθ L�

1

� �þβ. If β1 is greater than 1, then set β1 to 1.
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Step 6. Use the empirical distribution derived in Step 2 to find the β1th sample quantile eqβ1 . Also, find the β1th qua-
ntile bqβ1 of the fitted normal mixture distribution, and then calculate the value of the density function fbθ bqβ1� �

of
this fitted normal mixture distribution at this quantile value bqβ1 .
Step 7. Using the values calculated in Step 6 and Equation (6), a level β1,1�α=2ð Þ upper tolerance limit U�

1 can be
obtained.
Step 8. The interval L�1,U

�
1

� �
is the modified two-sided TI.

A small example is provided to illustrate Algorithm 1.

Example 1. The 12 data 0.7708, 12.9807, 1.3233, 2.9906, 1.7710, 0.0802, 8.1795, 0.8446, 0.6032, �1.0528,
0.2842, and �0.9290 are used to construct a level β,1�αð Þ¼ 0:99,0:95ð Þ TI using Algorithm 1. The TI can
be obtained by adhering to the procedures outlined in Algorithm 1, as follows.

Step 1. These data are fitted to a normal mixture distribution. The fitted normal mixture distribution
is 0:8328�N 0:6672,1:30662ð Þþ0:1672�N 10:5553,5:93502ð Þ:
Step 2. Calculate 1�0:99ð Þ=2th sample quantile from the empirical distribution based on the 12 data, which is
�1.0528.
Step 3. Calculate the 1�0:99ð Þ=2th quantile of the fitted normal mixture distribution, which is �2.2020, and calcu-
late the value of the density function of this fitted normal mixture distribution at this quantile value, which is
0.0125.
Step 4. Using Equation (7), a level 1�βð Þ=2,1�α=2ð Þ¼ 0:005,0:975ð Þ lower tolerance limit L�

1 ¼�1:4090 is
obtained.
Step 5. Calculate Fbθ L�

1

� �
, which is 0.0289. Then β1 ¼ 0:0289þ0:99¼ 1:0189, which is greater than 1. Set β1 to 1.

Step 6. Find β1 ¼ 1st sample quantile (100th percentile) from the empirical distribution, which is 12.9807. Find the
β1 ¼ 1st quantile of the fitted normal mixture distribution, which is 21.6066, and find the value of the density func-
tion of this fitted normal mixture distribution at this quantile value, which is 9.3042e-07.
Step 7. Based on Equation (6), a level β1,1�α=2ð Þ¼ 0:995,0:975ð Þ upper tolerance limit U�

1 ¼ 12:9807 is obtained.
Then (�1.4090, 12.9807) is a modified two-sided level 0:99,0:95ð Þ TI derived by the 12 data.

In addition to equal-tailed TIs, not equal-tailed TIs can be constructed based on these procedures. In Step 2 of
Procedure 1, a level 1�βð Þ=2,1�α=2ð Þ lower tolerance limit is considered. In some situations, if the TIs are not limited
to equal-tailed TIs, then the value 1�βð Þ=2 can be replaced by another specified value. This not equal-tailed TI method
can be applied to Procedure 2. A more general procedure that is an extension of Procedure 1 is summarized in a
flowchart in Figure 1.

Other bootstrap methods can be applied to improve the CPs of TIs. Two content-adjusted procedures for TIs based
on bootstrap were proposed to improve the CPs of TIs for some non-normal distributions or the normal mixture distri-
bution (Jiao et al., 2022). Furthermore, a researcher might be also interested in exploring TIs for specific subpopulations
as well as the entire population when assuming that the population has a normal mixture distribution. Accordingly,
individual TIs for subpopulations were investigated based on generalized fiducial inferences (Tsai, 2020).

5 | CONTROL CHART APPLICATION

One of the useful applications of TI is to construct control charts. A simple control chart for monitoring the mean of
samples is the X chart, and the widely-used control charts for monitoring the standard deviation are R and S charts
(Montgomery, 2020). TI control limits were developed for X , R, and S charts for the normal distribution (Hamada, 2003).
Control charts that are based on the assumption of a particular form of parametric distribution such as the normal dis-
tribution are called parametric control charts. The Bayesian TI has also been used to construct control charts for para-
metric distributions such as the exponential distribution (Ali et al., 2016; Demirhan & Hamurkaroglu, 2014). Bayesian
TI control limits which have the advantage of controlling the probability content at a specified level with given confi-
dence were proposed (Hamada, 2002). In addition to parametric distributions, in many industrial applications, the

8 of 14 WANG

 19390068, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
ics.1611 by H

siuying W
ang - N

ational Y
ang M

ing C
hiao T

ung U
nive , W

iley O
nline L

ibrary on [04/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



distribution assumption is hard to be justified. In this case, nonparametric or distribution-free control charts can be
used for a wider variety of purposes (Chakraborti, 2004; Chakraborti & Graham, 2019a). Both univariate and multivari-
ate nonparametric control charts have been reviewed and discussed (Chakraborti & Graham, 2019b).

In manufacturing processes, several factors may cause defects in the final output. That is, the engineering processes
may consist of several phenomena leading to defects with multiple causes. In this situation, the mixture models are
more suitable to model such types of multiple-cause defect systems instead of the simple probability models. Control

FIGURE 1 Flowchart of the construction of a modified two-sided TI.

WANG 9 of 14

 19390068, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
ics.1611 by H

siuying W
ang - N

ational Y
ang M

ing C
hiao T

ung U
nive , W

iley O
nline L

ibrary on [04/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



charts constructed for the mixture distribution have been proposed in the literature. A control chart for the two-
component mixture of inverse Rayleigh distribution was proposed (Ali & Riaz, 2014). Suppose that a population of
defective items is divided into two subpopulations. Then the total number of items inspected follows a two-
component mixture of geometric distributions. A control chart named the mixture cumulative count control chart
was constructed for the distribution function of a two-component mixture of geometric distributions using the num-
ber of items inspected until a defective item was observed (Majeed et al., 2013). An industrial multi-stream process
was a process in which items of the same type were manufactured in parallel in multiple output streams
(Epprecht, 2015). Construction of control limits with a mixture of probability distribution applications in the
multiple-stream processes was proposed, and it presented an alternative solution to Shewhart charts in cases where
there were different machines and product production flows (Vicentin et al., 2018). Nonparametric control charts
including multivariate signed-rank and multivariate sign control charts were applied on a mixture of multivariate
normal and t-distributions (Udom et al., 2021). In sensor networks and manufacturing technology, multivariate
processes face a new challenge with high-dimensional data. Control charts based on the variable-selection
(VS) algorithms have been developed. Since in manufacturing processes, data can have multimodal properties. A
VS-based control chart with a Gaussian mixture distribution was proposed to handle the problem of high-
dimensionality and multimodality (Yan et al., 2019). The VS-based control chart framework was also suggested to be
extended to the process with other multimodal distributions (Yan et al., 2019).

The control charts with the mixture distribution have various applications. The TIs for the mixture distributions
in Section 4 can be used to construct limits of control charts. In some situations, the characteristic of interest in the
manufactured process might be an observation rather than the mean of several observations. In this case, the toler-
ance limits can be directly used as control limits. Sometimes only the upper or lower control limits of the character-
istic of interest may be required, not both. For example, only an upper control limit is necessary when monitoring
the number of defective products. In situations where only one control limit is needed, the upper or lower tolerance
limit can be used as the control limit. For the case of requiring both upper and lower control limits, the modified
two-sided TIs in Procedures 1 and 2 can be considered as control limits. Since both Procedures 1 and 2 can be con-
sidered, we may be interested in which one is better. It is suggested that when the lower control limit is more impor-
tant, then we can adopt Procedure 1 by fixing the lower tolerance limit and then adjusting the upper tolerance limit,
and vice versa.

6 | REAL DATA EXAMPLE

A coronavirus disease 2019 (COVID-19) dataset is used to illustrate the TI method for the mixture normal distribution
and the connection to the control chart. The COVID-19 pandemic is a global outbreak of coronavirus since the end of
2019 (Chen & Wang, 2020b; Wang, 2022). To date, more than 600 million confirmed cases of COVID-19 have been
reported to the World Health Organization. Monitoring the number of daily new confirmed cases can help predict the
peak of the epidemic. The data of daily new COVID-19 confirmed cases were downloaded from the website of Our
World in Data https://github.com/owid/covid-19-data/tree/master/public/data on November 29, 2022. The Taiwan data
in 2020 and 2021 are used in this study. There are 351 and 365 data recorded for the 2 years of 2020 and 2021, respec-
tively. The date range for 2020 data are from January 16 to December 31, 2020, and the date range for 2021 data are
from January 1 to December 31, 2021. In 2020, there is no COVID-19 outbreak in Taiwan. The major outbreak was
around April and May 2021. Thus, the data of the 2020 year are used as historical data to construct a control chart for
monitoring the 2021 data. To predict the epidemic peak, we only need to set up a control chart with an upper control
limit but no lower control limit, because a small number of daily new COVID-19 confirmed cases is irrelevant to the
prediction of the epidemic peak.

In this scenario, the characteristic of interest is the number of the daily new confirmed case, which is an
observation, but not a parameter of a distribution. Hence, an upper tolerance limit for the distribution of the
number of daily new confirmed cases can be directly used as an upper control limit for monitoring the number of
daily new confirmed cases. First, the 351 data from 2020 are used to construct an upper tolerance limit. A normal
mixture distribution was used to fit the data by the Matlab software. The result showed that a normal mixture
distribution with two components could fit the data well. Thus, the fitted normal mixture distribution
0:7570�N 0:6767,0:80022ð Þþ0:2430�N 7:5284,42:05522ð Þ is used in this study.
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To construct a level 1�α¼ 0:95 and β¼ 0:99 upper tolerance limit based on Equation (4), it needs to calculate eqβ
and fbθ bqβ� �

. By calculation eqβ ¼ 22, fbθ bqβU� �
¼ 0:0032 and z1�α ¼ 1:6449. As a result, the upper tolerance limit is

[Equation (8)]

U ¼ 22þ1:6449� 0:99 1�0:99ð Þ
351�0:0032

	 
1=2

¼ 22:1466 ð8Þ

This upper control limit is used as an upper control limit to monitor the 2021 data. Figure 2 displays the 365 daily
new confirmed cases of 2021 data. The red line in Figure 2 is the upper control limit of 22.15. The first data exceeding
the control limit is the 133rd day of 2021 (May 13, 2021). On May 15, 2021, Taipei City was announced to enter the third
level of alert. On May 19, 2021, Taiwan's epidemic prevention alert level was raised to the third level. According to this
control chart monitor, the first out-of-control signal appeared 2 days earlier than the announcement of the third level.
After the peak period, the first data to reach the upper control limit is the 189th day (July 8, 2021). Since then, the data
gradually stabilized. It shows that this control limit also can predict the end of the peak accurately. On June 8, 2021,
the Moderna vaccine started and some people were given priority to receive the vaccine in Taiwan. This result shows
that this control chart can accurately predict the start and end of the peak period. It is also consistent with the policy of
epidemic prevention measures. Additionally, it is noted that the daily new confirmed cases may depend on past data,
but in this case, the control char method leads to a good result, so the dependence problem can be neglected. The data
and Matlab code for this real example and Example 1 are available at http://hwang.stat.nctu.edu.tw/TI.htm or https://
drive.google.com/drive/folders/1khbZ68_Eb6AaWO7Dn8cD1T1P8_to3ZHF?usp=sharing

The upper control limit using the tolerance limit constructed by the sample quantile method performs well in this
case. We can compare this upper control limit with the one constructed by the distribution-free tolerance limit. Using
the R package “tolerance,” the level 1�α¼ 0:95 and β¼ 0:99 distribution-free upper tolerance limit is 27. From Fig-
ure 2, if an upper control limit of 27 is used, it leads to a conservative result, predicting the start of the peak period later
and the end of the peak period earlier than the method using the normal mixture distribution.

7 | CONCLUSION

TIs are a useful tool to estimate the interval that can cover a fixed proportion of a population with a specified confi-
dence level for the common continuous and discrete distributions. TIs have various applications in quality control. In
multiple-stream manufacturing processes, a mixture distribution of some suitable probabilistic model might be a better
choice to be used to fit the data than a simple model. In this paper, TIs of normal mixture distributions and their appli-
cations to control charts are reviewed. A rule of constructing a modified two-sided TI for general mixture distributions

FIGURE 2 2021 data monitoring using an upper control limit constructed by the normal mixture distribution.
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is suggested based on the rule for the normal mixture distribution. The potential use of TI to construct control charts
with mixture distributions is also discussed.
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