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Tolerance interval for the mixture normal distribution

Chian Chen and Hsiuying Wang

Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan

ABSTRACT
Tolerance intervals (TIs) are widely used in numerous industries, ranging from engineering
to pharmaceuticals. In these applications, it is commonly assumed that data are normally
distributed. However, the normality assumption may not apply in many situations, such as
in the case of multiple production lines. As a result, the mixture normal distribution may be
a more applicable model than the normal distribution to fit real data. Although the conven-
tional distribution-free TI can be adopted for the mixture normal distribution, it leads to an
unsatisfactory coverage probability when the sample size is not sufficiently large. In this
study, we propose two Tls for the mixture normal distribution. The first is based the expect-
ation-maximization (EM) algorithm combined with the bootstrap method and the second is
based on the asymptotic property of sample quantiles. The simulation results show that the
proposed TIs have coverage probability closer to the nominal level than the distribution-
free interval. A real engineering data example is used to illustrate the methods.
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1. Introduction

A tolerance interval (TI), constructed based on a sam-
ple, is an interval expected to cover a fixed proportion
of the population with a stated confidence. For
example, an upper tolerance limit for a population
with a given confidence level is such that a specified
proportion or more of the population will fall below
this limit (Meeker, Hahn, and Escobar 2017). By a
similar definition, lower tolerance limits or TIs can be
defined. TIs are widely used in industrial applications,
such as in engineering and pharmaceutical industries
(Hauck and Shaikh 2004; Kane 1986).

In the analysis of continuous data, TIs are useful for
studying process capability, process reproducibility,
and pharmaceutical dose uniformity (Hauck and
Shaikh 2004; Kane 1986; Ryan 2007; Tsong, Shen, and
Shah 2004). In these applications, data may usually be
assumed to be normally distributed, and TIs for the
normal distribution can be applied to these studies. In
addition to continuous data, TIs are useful for analyz-
ing discrete data, such as quality control of the number
of defective units. Wang and Tsung (2009) and Cai
and Wang (2009) have proposed improved TIs for
Poisson and binomial distributions for quality control.
Mathew and Young (2013) proposed fiducial-based TIs

for discrete distributions. TIs for other parametric dis-
tributions can be found in Meeker, Hahn, and Escobar
(2017), Wang and Tsung (2017), and Patel (1986).

Although TIs have been widely discussed in the lit-
erature, to the best of our knowledge, no study has
focused on TIs for mixture distributions. In numerous
applications, the mixture normal distribution may be
more suitable than the normal model. For example,
semiconductors are vital for modern electronics, such
as light emitting diodes, computers, and cell phones.
In the semiconductor industry, silicon wafers are the
most common semiconductor material used in elec-
tronics for the fabrication of integrated circuits. The
manufacturing process for silicon wafers is long, to
guarantee the quality of semiconductor products, the
process must be carefully monitored. Because this
monitoring is conducted over numerous steps in the
manufacturing process, data are usually bimodal or
more complex. In this case, the mixture normal distri-
bution is more appropriate to fit the data than the
normal distribution. Because higher computational
costs are involved in employing the mixture normal
distribution than the normal distribution, it is difficult
to derive an exact TI for the mixture normal distribu-
tion. The distribution-free TI is widely used when the
data do not fit any parametric model or the TI is
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hard to obtain even though the data can fit a paramet-
ric model (Somerville 1958; Wilks 1942). Although the
conventional distribution-free TI may be a naive
approach, because the distribution-free TI can be
applied to all continuous distributions, it may be too
conservative for many distributions, such as the mix-
ture normal distribution. Moreover, any error in the
process may render the wafers useless, resulting in con-
siderable loss in productivity; thus, such a process
requires a high level of precision. From a simulation
study, we revealed that the performance of the distribu-
tion-free TI for the mixture normal distribution was
unsatisfactory in obtaining a high degree of accuracy
when the sample size was not sufficiently large.

In this study, we propose two TIs for the mixture
normal distribution. The first method combines the
expectation-maximization (EM) algorithm and the
bootstrap method and the second adopts the EM algo-
rithm and the asymptotic distribution of a sample
quantile to construct a TI. We compared the proposed
TIs in the simulation study. Many criteria have been
used to compare the TIs in the literature (Patel 1986),
and the most frequently used is coverage probability.
The coverage probability of a TI can be regarded as
how the frequency of the TI captures a certain propor-
tion or more of the population. A simulation study
shows that the coverage probabilities of the proposed
methods are closer to the nominal level than the distri-
bution-free interval. Additionally, the second proposed
TI outperforms the other TIs in most simulations.

This article is organized as follows. In Section 2, we
review the key concepts involving TIs and the mixture
normal distribution. Two proposed TIs are presented in
Section 3. A simulation study comparing the perform-
ance of the TIs is detailed in Section 4. These methods
are illustrated by a real data example in Section 5.
Finally, a conclusion is provided in Section 6.

2. TIs and models

Let X ¼ ðX1; :::;XnÞ be random samples from FhðxÞ;
where FhðxÞ is the cumulative distribution function
with an unknown parameter h: To find a TI for
FhðxÞ; we first review the definition of a TI. An inter-
val ½LðXÞ;UðXÞ� satisfying

P Fh U Xð Þð Þ � Fh L Xð Þð Þ½ � � b
� �

¼ 1�a [1]

is said to be a two-sided b-content, 1�aconfidence TI
(i.e., ðb; 1� aÞ TI) for FhðxÞ: When LðXÞ is replaced
by �1 or UðXÞ is replaced by 1; the interval is
called a ðb; 1� aÞ upper tolerance limit or a ðb; 1� aÞ
lower tolerance limit for Fh: Furthermore, for the one-

sided tolerance limit, a ðb; 1� aÞ lower tolerance limit
and a ðb; 1� aÞ upper tolerance limit are equivalent to
a 1�a level lower confidence bound for the (1�b)th
and bth quantiles of the distribution, respectively. Note
that the left-hand side of Eq. [1] is the definition of the
coverage probability of a TI.

The TI for the normal distribution has been widely
discussed in the literature (Odeh and Owen 1980).
First, we review the calculation of the exact TI for the
normal distribution. Let Y1; :::;Yn be a random sam-
ple from the normal distribution with mean l and
variance r2: Let �Y and S2 denote the mean and vari-
ance of this sample. The exact (b, 1 – a) upper- and
lower-tolerance limits are

�Y þ t1�a n� 1;
ffiffiffi
n

p
zb

� �
ffiffiffi
n

p S;

and

�Y� t1�a n� 1;
ffiffiffi
n

p
zb

� �
ffiffiffi
n

p S

respectively, where t1�aðn� 1;
ffiffiffi
n

p
zbÞ is the (1 – a)th

quantile of a noncentral t distribution with n�1
degrees of freedom and noncentral parameter

ffiffiffi
n

p
zb:

The exact (b, 1 – a) two-sided Tl for the normal dis-
tribution has the form �Y6k2S; where k2 can be found
in Meeker, Hahn, and Escobar (2017; Tables J.5a and
J.5b). In this case, there is a closed form of the exact
TI that exists for the normal distribution. Unlike in
the normal distribution, we cannot find an exact
closed form TI for the mixture normal distribution.
First, we review the mixture normal distribution.A
k-components mixture normal distribution has the
probability density function

fh xð Þ ¼
Xk
j¼1

pjglj;r2j xð Þ;�1 < x < 1; [2]

where glj;r2j ðxÞ denotes the normal distribution
with mean lj and variance r2j ; pjdenotes the weight
of the j-th component,

Pk
j¼1 pj ¼ 1 and h ¼

f p1; :::; pk; l1; :::; lk; r
2
1; :::r

2
kg:

A naive TI for the mixture distribution is the dis-
tribution-free TI, which is constructed based on order
statistics and can be applied to most continuous dis-
tributions. Let XðiÞ denote the ith order statistic. A
ðb; 1� aÞ distribution-free TI has the form½XðrÞ;XðsÞ�;
where r and s satisfy

P Fh X sð Þ
� �� Fh X rð Þ

� � � b
� � � 1�a:

[3]

We generally choose r and s symmetrically or
almost symmetrically within the ordered sample data.
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According to Meeker, Hahn, and Escobar (2017), the
exact coverage probability of the left-hand side of [3]
is PðY � s� r � 1Þ; where Y follows a binomial dis-
tribution Bðn; bÞ:

Although the distribution-free TI is a convenient
approach, the performance of this method is not sat-
isfactory. The coverage probability of the distribu-
tion-free TI can be much lower than the nominal
level when the sample size is not large enough or the
content b is large. In some industry applications, the
content of the TI is required to be close to one, such
as 0.99 (ANSI/ASQ 2003 (COR)). In this case, unless
the sample size is sufficiently large, the performance
of the distribution-free TI is unsatisfactory. For
example, to achieve a nominal coverage probability
0.95, the sample size of a two-sided ð0:99; 0:95Þ dis-
tribution-free TI must be greater than or equal to
473. When the sample size is 100 or 200, the cover-
age probabilities of the conventional two-sided
ð0:99; 0:95Þ distribution-free TI are only 0.264 and
0.595, respectively, which are much lower than the
nominal level 0.95. However, because of cost con-
straints, it is likely that the sample size will be less
than 200 in real applications. Therefore, to overcome
these unsatisfactory results caused by the distribu-
tion-free TI, we propose two TIs for the mixture
normal distribution.

3. Main results

In this section, two TIs for the mixture normal distri-
bution are proposed.

3.1. Tl based on the bootstrap method

We first propose a method for constructing TIs based
on the estimated mixture normal distribution, in
which the parameter is estimated by the maximum
likelihood estimator (MLE).

Let ĥ denote the MLE of h: The EM algorithm is a
widely used method for obtaining the MLE for the
mixture normal distribution (Dempster, Laird, and
Rubin1977). To apply the EM algorithm, we adopt the
k -means approach to set initial values of the parame-
ters. Let qr � F�1

h ðrÞ denote the rth quantile of the
mixture normal distribution and let q̂r denote the
MLE of qr: According to the invariance property, the
quantile of this estimated mixture normal distribution
is the MLE of the true quantile. Therefore, we
have q̂r ¼ F�1

ĥ
ðrÞ:

We first construct a one-sided tolerance limit based
on q̂r: By the property that the asymptotic

distribution of the MLE approximates to the normal
distribution (Casella and Berger 2002), we propose a
ðb; 1� aÞ lower tolerance limit

q̂1�b�z1�aŝ1�b;

where ŝ1�b is the estimated standard error of q̂1�b
obtained by the bootstrap approach and z1�a is the
1�a upper cutoff point of the standard normal distri-
bution. By a similar argument, a proposed ðb; 1� aÞ
upper tolerance limit is

q̂b þ z1�aŝb:

Using the one-side tolerance limit results, we pro-
pose a two-sided TI as

q̂bL � z1�a=2ŝbL ; q̂bU þ z1�a=2ŝbU
� �

; [4]

where bL ¼ ð1� bÞ=2; and bU ¼ ð1þ bÞ=2:
The details of obtaining the terms in the interval

[4] are provided in Procedure 1.

Procedure 1
Step 1. Use the k-means approach to classify the

observed data X1; :::;Xn into k clusters. Calculate the
means and standard deviations for the k clusters that
are used as the initial values of ðl1; r21Þ; :::; ðlk; r2kÞ in
[2]. Set the initial values of ðp1; :::; pkÞ to be the pro-
portion of data classified to each group.

Step 2. Use the initial values obtained in step 1
and apply the EM algorithm to obtain the MLE ĥ
for h:

Step 3. Find the bL-th and bU-th quantiles of the
estimated mixture normal distribution fĥðxÞ; which
are q̂bL and q̂bU ; respectively.

Step 4. To obtain ŝbL and ŝbU of [4], generate a
sample y1; :::; yn from fĥðxÞ; and adopt steps 1 and 2
to find the MLE based on the sample y1; :::; yn; which
is denoted by ĥy1;:::;yn : Calculate the bL-th and bU-th
quantiles qbL

y1;::yn and qbU
y1;:::;yn of the estimated mix-

ture normal distribution fĥy1 ;::::yn
ðxÞ:

Step 5. Repeat step 4 m times to obtain
qy1;:::;ynð1ÞbU

; :::; qy1;:::;ynðmÞ
bU

and qy1;:::;ynð1ÞbL
; :::; qy1;:::;ynðmÞ

bL
: Let

ŝbU and ŝbL be the sample standard deviations of
qy1;:::;ynð1ÞbU

; :::; qy1;:::;ynðmÞ
bU

and qy1;:::;ynð1ÞbL
; :::; qy1;:::;ynðmÞ

bL
;

respectively.
Step 6. Combine the results of steps 1 through 5 to

obtain TI [4].

3.2. Tl based on the sample quantile

In this subsection, we propose another method for
constructing a TI based on the asymptotic distribution
of the sample quantile. Let
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Fn xð Þ ¼ 1
n

Xn
i¼1

I Xi � xð Þ

denote the empirical distribution based on the sample
X1; ::::;Xn; and ~qr � F�1

n ðrÞ ¼ infftjFnðtÞ � rg is the
r-th sample quantile. By Serfling (1980), we have

ffiffiffi
n

p
~qr � qrð Þ ! N 0;

r 1� rð Þ
fh qrð Þ2

 !
: [5]

Because h and qr are unknown, to adopt Eq. [5] to
construct a TI, we can replace h and qr with ĥ and q̂r:
As a result, we have

Lq ¼ ~q1�b�z1�a
b 1� bð Þ
nfĥ q̂1�b

� �2
 !1

2

[6]

and

Uq ¼ ~qb þ z1�a
b 1� bð Þ
nfĥ q̂b
� �2

 !1
2

; [7]

as a ðb; 1� aÞ lower tolerance limit and a ðb; 1� aÞ
upper tolerance limit for FhðxÞ; respectively. From a
simulation study, we found that, for a one-sided toler-
ance limit, the coverage probability of the lower toler-
ance limit [6] is always greater than or equal to that
of the upper tolerance limit [7].

Theorem 1. The coverage probability PðL1�b<q1�bÞ is
greater than or equal to Pðqb<UbÞ when n is large.

The proof of Theorem 1 is given in the Appendix.
To improve the coverage probability of the upper tol-
erance limit [7], we found that a slight modification
of the upper tolerance limit [7] by replacing ~qbwith
~q0b can lead to a better result, where ~q0b ¼
infftjFnðtÞ � bþ 1=ng: Therefore, the proposed
ðb; 1� aÞ upper tolerance limit and lower tolerance
limit of the second method are

~q0b þ z1�a
b 1� bð Þ
nfĥ q̂b
� �2

 !1
2

[8]

and [6], respectively.
For the two-sided TI, although we can directly use

the lower limit [6] and the upper limit [8] as two lim-
its, the performance is unsatisfactory. Thus, we pro-
pose a method by first using one of the two one-sided
tolerance limits as a tolerance limit and then adjusting
the other one. For the case of first using the lower tol-
erance limit, we use [6] as a lower tolerance limit, and
then replace bU ¼ ð1þ bÞ=2 with

b�U ¼ Fĥ Lqð Þ þ b: [9]

Therefore, the proposed ðb; 1� aÞ TI is

~qbL� z1�a=2
bL 1� bLð Þ
nfĥ q̂bL
� �2

 !1=2

; ~q0b�U þ z1�a=2
b�U 1� b�U
� �

nfĥ q̂b�U

	 
2
0
@

1
A

1=2
2
64

3
75:

[10]

By a similar argument, we can first use [8] as an
upper tolerance limit and replace bL ¼ ð1� bÞ=2 by

b�L ¼ Fĥ Uqð Þ�b:

Therefore, the proposed ðb; 1� aÞ TI is

~qb�L � z1�a=2
b�L 1� b�L
� �

nfĥ q̂b�L

	 
2
0
@

1
A

1=2

; ~q0bUþ z1�a=2
bU 1� bUð Þ
nfĥ q̂bU
� �2

 !1=2
2
64

3
75:

[11]

The details of obtaining the second proposed TI
are given in Procedure 2.

Procedure 2
Step 1. Follow steps 1 and 2 in procedure 1 to

obtain the MLE for h:
Step 2. Use Eq. [6] to obtain a lower tolerance

limit, Eq. [8] to obtain an upper tolerance limit, and
Eq. [10] or Eq. [11] to obtain a two-sided TI.

4. Simulation

We conduct a simulation study to compare the pro-
posed TIs with the distribution-free TI. In addition,
we compare them with the exact TI for the normal
distribution by assuming that the model is mis-speci-
fied to be a normal distribution. As stated in Section
1, the distribution-free TI exhibits drawbacks when
the sample size is not sufficiently large or when the
content b is close to one. Because the high content
case is crucial in industry applications, in this simula-
tion study, we focus on the high content case. In this
simulation, the level ðb; 1� aÞ is set to be
ð0:99; 0:95Þ; and the sample size n is set to be 20, 100,
200, 400, 1,000 and m ¼ 1000:

In addition to comparing the coverage probabilities
of these TIs, we also define the measure

d1 ¼ jestimated limit� qbj [12]

and

d2 ¼ jestimated lower limit� qbL j
þ jestimated upper limit� qbU j

[13]

to compare the mean of the absolute difference
between the exact quantile and the estimated limits of
these TIs for the one- and two-sided TIs, respectively.
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The coverage probabilities and the d1 and d2 values of
these TIs are presented in Tables 1–8. Note that, in
the small sample size case or when components have
a large overlap, occasionally the EM algorithm may
not converge. In these cases, we use the notation “—”
in the tables.

Tables 1 and 2 present the results of the lower tol-
erance limit, and the results of the upper tolerance
limit are shown in Tables 3 and 4. Tables 1 and 3

indicate that the coverage probability of the bootstrap
method strongly depends on the precision of the par-
ameter estimation. The modified sample quantile
method is closer to the nominal level 0.95 compared
with the distribution-free and bootstrap methods.
Generally, the bootstrap method is superior to the dis-
tribution-free method. However, when the compo-
nents glj;r2j ðxÞ of the mixture distribution [2] have a
substantial overlap, the bootstrap method may not be
more favorable than the distribution-free method

Table 1. Coverage probabilities of the ð0:99; 0:95Þ lower tol-
erance limit. The values in parentheses denote the standard
deviation of the simulation.
Sample size Normal Distribution free Bootstrap Sample quantile

p ¼ ð1=3; 2=3Þ;l ¼ ð0; 0:5Þ; r ¼ ð1; 1Þ
20 0.947(0.003) 0.175(0.005) — 0.703(0.006)
100 0.955(0.003) 0.634(0.007) 0.803(0.006) 0.943(0.003)
200 0.954(0.003) 0.864(0.005) 0.851(0.005) 0.941(0.003)
400 0.939(0.003) 0.980(0.002) 0.921(0.004) 0.946(0.003)
1000 0.937(0.004) 0.974(0.002) 0.929(0.004) 0.946(0.003)

p ¼ ð1=2; 1=2Þ;l ¼ ð0; 4Þ; r ¼ ð1:2; 1:5Þ
20 0.998(<0.001) 0.179(0.005) 0.739(0.006) 0.821(0.005)
100 0.999(<0.001) 0.637(0.007) 0.902(0.004) 0.964(0.003)
200 0.999(<0.001) 0.869(0.005) 0.917(0.004) 0.959(0.003)
400 0.999(<0.001) 0.983(0.002) 0.956(0.003) 0.960(0.003)
1000 0.999(<0.001) 0.969(0.002) 0.946(0.003) 0.962(0.003)

p ¼ ð1=4; 1=2; 1=4Þ;l ¼ ð0; 1; 2Þ;r ¼ ð1; 1; 1Þ
20 0.957(0.003) 0.180(0.005) — —
100 0.964(0.002) 0.633(0.007) 0.769(0.006) 0.907(0.004)
200 0.970(0.002) 0.868(0.005) 0.813(0.006) 0.922(0.004)
400 0.980(0.002) 0.985(0.002) 0.907(0.004) 0.935(0.003
1000 0.987(0.001) 0.971(0.002) 0.914(0.004) 0.941(0.003)

p ¼ ð1=3; 1=3; 1=3Þ;l ¼ ð0; 4; 8Þ;r ¼ ð1; 1:5; 1Þ
20 0.999(<0.001) 0.177(0.005) 0.770(0.006) 0.781(0.006)
100 0.999(<0.001) 0.637(0.007) 0.902(0.004) 0.964(0.003)
200 0.999(<0.001) 0.869(0.005) 0.917(0.004) 0.959(0.003)
400 0.999(<0.001) 0.982(0.002) 0.947(0.003) 0.960(0.003)
1000 0.999(<0.001) 0.972(0.002) 0.944(0.003) 0.959(0.003)

Table 2. Values of d1 for the ð0:99; 0:95Þ lower toler-
ance limit.
Sample size Normal Distribution free Bootstrap Sample quantile

p ¼ ð1=3; 2=3Þ;l ¼ ð0; 0:5Þ; r ¼ ð1; 1Þ
20 0.973(0.008) 0.612(0.005) — 0.736(0.009)
100 0.366(0.003) 0.359(0.004) 0.381(0.005) 0.768(0.008)
200 0.252(0.002) 0.463(0.005) 0.315(0.004) 0.540(0.006)
400 0.172(0.001) 0.668(0.005) 0.228(0.002) 0.359(0.003)
1000 0.103(0.001) 0.294(0.002) 0.147(0.001) 0.218(0.002)

p ¼ ð1=2; 1=2Þ;l ¼ ð0; 4Þ; r ¼ ð1:2; 1:5Þ
20 3.451(0.014) 0.819(0.007) 1.060(0.012) 1.243(0.014)
100 2.022(0.005) 0.459(0.006) 0.567(0.005) 1.036(0.009)
200 1.742(0.004) 0.589(0.007) 0.406(0.004) 0.696(0.006)
400 1.566(0.003) 0.835(0.007) 0.302(0.003) 0.471(0.004)
1000 1.409(0.002) 0.370(0.003) 0.184(0.002) 0.284(0.002)

p ¼ ð1=4; 1=2; 1=4Þ;l ¼ ð0; 1; 2Þ;r ¼ ð1; 1; 1Þ
20 1.192(0.009) 0.701(0.006) — —
100 0.475(0.003) 0.406(0.005) 0.454(0.005) 0.794(0.008)
200 0.336(0.002) 0.519(0.006) 0.369(0.004) 0.569(0.006)
400 0.248(0.002) 0.727(0.006) 0.266(0.003) 0.391(0.004)
1000 0.166(0.001) 0.325(0.003) 0.169(0.002) 0.242(0.002)

p ¼ ð1=3; 1=3; 1=3Þ;l ¼ ð0; 4; 8Þ;r ¼ ð1; 1:5; 1Þ
20 5.544(0.019) 0.746(0.007) 0.975(0.011) 1.110(0.013)
100 3.432(0.007) 0.402(0.005) 0.546(0.005) 0.963(0.008)
200 3.044(0.005) 0.513(0.006) 0.393(0.004) 0.634(0.005)
400 2.788(0.003) 0.717(0.006) 0.272(0.002) 0.423(0.003)
1000 2.563(0.002) 0.325(0.002) 0.170(0.001) 0.251(0.002)

Table 3. Coverage probabilities of the ð0:99; 0:95Þ upper tol-
erance limit.
Sample size Normal Distribution free Bootstrap Sample quantile

p ¼ ð1=3; 2=3Þ; l ¼ ð0; 0:5Þ; r ¼ ð1; 1Þ
20 0.953(0.003) 0.173(0.005) — 0.701(0.006)
100 0.953(0.003) 0.634(0.007) 0.807(0.006) 0.939(0.003)
200 0.960(0.003) 0.864(0.005) 0.854(0.005) 0.948(0.003)
400 0.957(0.003) 0.979(0.002) 0.925(0.004) 0.951(0.003)
1000 0.958(0.003) 0.971(0.002) 0.929(0.004) 0.956(0.003)

p ¼ ð1=2; 1=2Þ; l ¼ ð0; 4Þ; r ¼ ð1:2; 1:5Þ
20 0.988(0.001) 0.183(0.005) 0.801(0.006) 0.759(0.006)
100 0.999(<0.001) 0.637(0.007) 0.904(0.004) 0.958(0.003)
200 0.999(<0.001) 0.869(0.005) 0.913(0.004) 0.955(0.003)
400 0.999(<0.001) 0.983(0.002) 0.945(0.003) 0.959(0.003)
1000 0.999(<0.001) 0.969(0.002) 0.943(0.003) 0.957(0.003)

p ¼ ð1=4; 1=2; 1=4Þ; l ¼ ð0; 1; 2Þ;r ¼ ð1; 1; 1Þ
20 0.962(0.003) 0.182(0.005) — —
100 0.966(0.003) 0.633(0.007) 0.766(0.006) 0.901(0.004)
200 0.970(0.002) 0.868(0.005) 0.815(0.005) 0.918(0.004)
400 0.978(0.002) 0.980(0.002) 0.897(0.004) 0.933(0.004)
1000 0.985(0.001) 0.974(0.002) 0.912(0.004) 0.939(0.003)

p ¼ ð1=3; 1=3; 1=3Þ; l ¼ ð0; 4; 8Þ;r ¼ ð1; 1:5; 1Þ
20 0.998(<0.001) 0.177(0.005) 0.806(0.006) 0.775(0.006)
100 0.999(<0.001) 0.637(0.007) 0.902(0.004) 0.959(0.003)
200 0.999(<0.001) 0.869(0.005) 0.915(0.004) 0.961(0.003)
400 0.999(<0.001) 0.982(0.002) 0.949(0.003) 0.958(0.003)
1000 0.999(<0.001) 0.969(0.002) 0.945(0.003) 0.960(0.003)

Table 4. Values of d1 for the ð0:99; 0:95Þ upper toler-
ance limit.
Sample size Normal Distribution free Bootstrap Sample quantile

p ¼ ð1=3; 2=3Þ; l ¼ ð0; 0:5Þ; r ¼ ð1; 1Þ
20 0.976(0.008) 0.599(0.005) — 0.763(0.009)
100 0.379(0.003) 0.355(0.004) 0.397(0.005) 0.760(0.007)
200 0.263(0.002) 0.471(0.005) 0.312(0.004) 0.522(0.005)
400 0.183(0.001) 0.662(0.005) 0.225(0.002) 0.353(0.003)
1000 0.113(0.001) 0.287(0.002) 0.146(0.001) 0.221(0.002)

p ¼ ð1=2; 1=2Þ; l ¼ ð0; 4Þ; r ¼ ð1:2; 1:5Þ
20 2.836(0.016) 1.017(0.009) 1.210(0.013) 1.426(0.016)
100 1.406(0.006) 0.637(0.007) 0.669(0.007) 1.300(0.011)
200 1.129(0.004) 0.748(0.008) 0.509(0.005) 0.859(0.007)
400 0.953(0.003) 1.035(0.008) 0.355(0.003) 0.588(0.005)
1000 0.794(0.002) 0.461(0.003) 0.230(0.002) 0.355(0.003)

p ¼ ð1=4; 1=2; 1=4Þ; l ¼ ð0; 1; 2Þ;r ¼ ð1; 1; 1Þ
20 1.205(0.009) 0.686(0.006) — —
100 0.475(0.003) 0.399(0.005) 0.449(0.006) 0.802(0.008)
200 0.334(0.002) 0.511(0.006) 0.358(0.004) 0.557(0.007)
400 0.247(0.002) 0.730(0.006) 0.267(0.003) 0.389(0.004)
1000 0.167(0.001) 0.328(0.002) 0.173(0.002) 0.237(0.002)

p ¼ ð1=3; 1=3; 1=3Þ; l ¼ ð0; 4; 8Þ;r ¼ ð1; 1:5; 1Þ
20 5.499(0.019) 0.743(0.007) 1.010(0.012) 1.085(0.013)
100 3.445(0.007) 0.417(0.005) 0.553(0.005) 0.957(0.008)
200 3.058(0.005) 0.522(0.006) 0.394(0.003) 0.622(0.005)
400 2.795(0.003) 0.726(0.006) 0.270(0.002) 0.419(0.003)
1000 2.569(0.002) 0.327(0.002) 0.171(0.001) 0.250(0.002)
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because the EM algorithm may not precisely converge
to the true parameter value.

Tables 5–8 present the results of the two-sided TIs.
Table 5 shows that the coverage probabilities of the
two-sided TIs obtained by fixing the lower limit and
adjusting the upper limit, and Table 7 shows the
coverage probabilities of the two-sided TIs obtained
by fixing the upper limit and adjusting the lower
limit. Unlike for one-sided tolerance limits, the
modified sample quantile method is always better
than the bootstrap method; for two-sided Tis, the

modified sample quantile method is inferior to the
bootstrap method in several cases. Note that, when
the sample size is very small, both of proposed
methods cannot achieve the nominal level (the
coverage probabilities are approximately 0.7 to 0.8).
However, these proposed methods still outperform
the distribution-free method (the coverage probabil-
ity is less than 0.1) when the components of the
mixture normal distribution do not exhibit a sub-
stantial overlap.

Table 5. Coverage probabilities of the ð0:99; 0:95Þ TI (10).
Sample size Normal Distribution free Bootstrap Sample quantile

p ¼ ð1=3; 2=3Þ;l ¼ ð0; 0:5Þ; r ¼ ð1; 1Þ
20 0.948(0.003) 0.021(0.002) — 0.603(0.007)
100 0.950(0.003) 0.263(0.006) 0.864(0.005) 0.920(0.004)
200 0.958(0.003) 0.596(0.007) 0.926(0.004) 0.956(0.003)
400 0.954(0.003) 0.907(0.004) 0.945(0.003) 0.950(0.003)
1000 0.945(0.003) 0.970(0.002) 0.969(0.002) 0.954(0.003)

p ¼ ð1=2; 1=2Þ;l ¼ ð0; 4Þ; r ¼ ð1:2; 1:5Þ
20 0.996(<0.001) 0.017(0.002) 0.759(0.006) 0.752(0.006)
100 0.999(<0.001) 0.267(0.006) 0.956(0.003) 0.958(0.003)
200 0.999(<0.001) 0.601(0.007) 0.976(0.002) 0.981(0.002)
400 0.999(<0.001) 0.912(0.004) 0.985(0.002) 0.978(0.002)
1000 0.999(<0.001) 0.969(0.002) 0.994(<0.001) 0.972(0.002)

p ¼ ð1=4; 1=2; 1=4Þ;l ¼ ð0; 1; 2Þ;r ¼ ð1; 1; 1Þ
20 0.961(0.003) 0.022(0.002) — —
100 0.973(0.002) 0.268(0.006) 0.767(0.006) 0.834(0.005)
200 0.979(0.002) 0.597(0.007) 0.864(0.005) 0.916(0.004)
400 0.986(0.001) 0.907(0.004) 0.935(0.003) 0.922(0.004)
1000 0.996(<0.001) 0.973(0.002) 0.961(0.003) 0.937(0.003)

p ¼ ð1=3; 1=3; 1=3Þ;l ¼ ð0; 4; 8Þ;r ¼ ð1; 1:5; 1Þ
20 0.998(<0.001) 0.019(0.002) 0.797(0.006) 0.716(0.006)
100 0.999(<0.001) 0.267(0.006) 0.959(0.003) 0.958(0.003)
200 0.999(<0.001) 0.600(0.007) 0.982(0.002) 0.981(0.002)
400 0.999(<0.001) 0.903(0.004) 0.983(0.002) 0.976(0.002)
1000 0.999(<0.001) 0.973(0.002) 0.989(0.001) 0.969(0.002)

Table 6. Values of d2 for the ð0:99; 0:95Þ TI (10).
Sample size Normal Distribution free Bootstrap Sample quantile

p ¼ ð1=3; 2=3Þ;l ¼ ð0; 0:5Þ; r ¼ ð1; 1Þ
20 2.119(0.017) 1.583(0.009) — 1.755(0.019)
100 0.762(0.006) 0.714(0.005) 0.997(0.010) 1.475(0.013)
200 0.509(0.004) 0.680(0.006) 0.798(0.008) 1.214(0.009)
400 0.348(0.003) 0.881(0.007) 0.640(0.005) 0.743(0.006)
1000 0.217(0.002) 0.640(0.004) 0.422(0.003) 0.454(0.003)

p ¼ ð1=2; 1=2Þ;l ¼ ð0; 4Þ; r ¼ ð1:2; 1:5Þ
20 7.078(0.033) 2.343(0.014) 2.798(0.023) 3.299(0.027)
100 3.881(0.013) 1.013(0.007) 1.635(0.010) 2.270(0.014)
200 3.318(0.009) 0.950(0.008) 1.198(0.007) 1.848(0.011)
400 2.952(0.006) 1.221(0.010) 0.868(0.005) 1.089(0.006)
1000 2.660(0.004) 0.886(0.006) 0.545(0.003) 0.638(0.004)

p ¼ ð1=4; 1=2; 1=4Þ;l ¼ ð0; 1; 2Þ;r ¼ ð1; 1; 1Þ
20 2.607(0.020) 1.791(0.010) — —
100 1.002(0.007) 0.791(0.006) 1.079(0.010) 1.513(0.014)
200 0.713(0.005) 0.746(0.006) 0.903(0.008) 1.263(0.010)
400 0.525(0.004) 0.956(0.007) 0.741(0.006) 0.793(0.006)
1000 0.360(0.002) 0.705(0.005) 0.491(0.003) 0.494(0.003)

p ¼ ð1=3; 1=3; 1=3Þ;l ¼ ð0; 4; 8Þ;r ¼ ð1; 1:5; 1Þ
20 12.680(0.041) 1.904(0.011) 2.797(0.021) 2.736(0.023)
100 8.035(0.015) 0.807(0.006) 1.473(0.009) 1.905(0.013)
200 7.234(0.011) 0.738(0.006) 1.059(0.007) 1.462(0.009)
400 6.700(0.007) 0.953(0.008) 0.742(0.004) 0.872(0.005)
1000 6.266(0.005) 0.706(0.005) 0.456(0.002) 0.520(0.003)

Table 7. Coverage probabilities of the ð0:99; 0:95Þ TI (11).
Sample size Normal Distribution free Bootstrap Sample quantile

p ¼ ð1=3; 2=3Þ; l ¼ ð0; 0:5Þ; r ¼ ð1; 1Þ
20 0.948(0.003) 0.018(0.002) — 0.614(0.007)
100 0.950(0.003) 0.263(0.006) 0.861(0.005) 0.921(0.004)
200 0.958(0.003) 0.595(0.007) 0.926(0.004) 0.938(0.003)
400 0.954(0.003) 0.907(0.004) 0.947(0.003) 0.940(0.003)
1000 0.945(0.003) 0.975(0.002) 0.971(0.002) 0.941(0.003)

p ¼ ð1=2; 1=2Þ; l ¼ ð0; 4Þ; r ¼ ð1:2; 1:5Þ
20 0.996(<0.001) 0.017(0.002) 0.759(0.006) 0.762(0.006)
100 0.999(<0.001) 0.267(0.006) 0.953(0.003) 0.963(0.003)
200 0.999(<0.001) 0.593(0.007) 0.977(0.002) 0.969(0.003)
400 0.999(<0.001) 0.912(0.004) 0.984(0.002) 0.967(0.003)
1000 0.999(<0.001) 0.973(0.002) 0.993(0.001) 0.965(0.003)

p ¼ ð1=4; 1=2; 1=4Þ; l ¼ ð0; 1; 2Þ;r ¼ ð1; 1; 1Þ
20 0.961(0.003) 0.024(0.002) — —
100 0.973(0.002) 0.268(0.006) 0.770(0.006) 0.843(0.005)
200 0.979(0.002) 0.602(0.007) 0.866(0.005) 0.897(0.004)
400 0.986(0.001) 0.907(0.004) 0.933(0.003) 0.903(0.004)
1000 0.996(<0.001) 0.972(0.002) 0.963(0.003) 0.917(0.004)

p ¼ ð1=3; 1=3; 1=3Þ; l ¼ ð0; 4; 8Þ;r ¼ ð1; 1:5; 1Þ
20 0.998(<0.001) 0.021(0.002) 0.792(0.005) 0.710(0.006)
100 0.999(<0.001) 0.267(0.006) 0.961(0.003) 0.961(0.003)
200 0.999(<0.001) 0.595(0.007) 0.981(0.002) 0.966(0.003)
400 0.999(<0.001) 0.903(0.004) 0.983(0.002) 0.958(0.003)
1000 0.999(<0.001) 0.972(0.002) 0.990(0.001) 0.953(0.003)

Table 8. Values of d2 for the ð0:99; 0:95Þ TI (11).
Sample size Normal Distribution free Bootstrap Sample quantile

p ¼ ð1=3; 2=3Þ; l ¼ ð0; 0:5Þ; r ¼ ð1; 1Þ
20 2.119(0.017) 1.583(0.009) — 1.765(0.019)
100 0.762(0.006) 0.714(0.005) 0.997(0.010) 1.476(0.013)
200 0.509(0.004) 0.680(0.006) 0.798(0.008) 1.227(0.009)
400 0.348(0.003) 0.881(0.007) 0.640(0.005) 0.799(0.006)
1000 0.217(0.002) 0.640(0.004) 0.422(0.003) 0.473(0.003)

p ¼ ð1=2; 1=2Þ; l ¼ ð0; 4Þ; r ¼ ð1:2; 1:5Þ
20 7.078(0.033) 2.343(0.014) 2.798(0.023) 3.277(0.026)
100 3.881(0.013) 1.013(0.007) 1.635(0.010) 2.301(0.014)
200 3.318(0.009) 0.950(0.008) 1.198(0.007) 1.886(0.011)
400 2.952(0.006) 1.221(0.010) 0.868(0.005) 1.212(0.007)
1000 2.660(0.004) 0.886(0.006) 0.545(0.003) 0.707(0.004)

p ¼ ð1=4; 1=2; 1=4Þ; l ¼ ð0; 1; 2Þ;r ¼ ð1; 1; 1Þ
20 2.607(0.020) 1.791(0.010) — —
100 1.002(0.007) 0.791(0.006) 1.079(0.010) 1.511(0.014)
200 0.713(0.005) 0.746(0.006) 0.903(0.008) 1.276(0.010)
400 0.525(0.004) 0.956(0.007) 0.741(0.006) 0.865(0.007)
1000 0.360(0.002) 0.705(0.005) 0.491(0.003) 0.518(0.003)

p ¼ ð1=3; 1=3; 1=3Þ; l ¼ ð0; 4; 8Þ;r ¼ ð1; 1:5; 1Þ
20 12.680(0.041) 1.904(0.011) 2.797(0.021) 2.707(0.023)
100 8.035(0.015) 0.807(0.006) 1.473(0.009) 1.903(0.013)
200 7.234(0.011) 0.738(0.006) 1.059(0.007) 1.463(0.009)
400 6.700(0.007) 0.953(0.008) 0.742(0.004) 0.920(0.005)
1000 6.266(0.005) 0.706(0.005) 0.456(0.002) 0.535(0.003)
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Under criteria [12] and [13], the bootstrap method
outperforms the other methods. Although the distri-
bution-free method occasionally has a more favorable
performance when the sample size is not sufficiently
large, the coverage probability is far away from the
nominal level. The sample quantile method also pro-
vides good performance under these criteria.
Additionally, the TI of the normal distribution is very
conservative except when the components have a con-
siderable overlap. The absolute values of the difference
between the coverage probability and the nominal

level for the case of p ¼ ð1=2; 1=2Þ; l ¼ ð0; 4Þ; and
r ¼ ð1:2; 1:5Þ from Table 5 are plotted in Figure 1.

In our simulation study, because the performances
of the bootstrap method and the modified sample
quantile method strongly depend on component over-
lap, to ensure that the bootstrap method and the
modified sample quantile method can compete simi-
larly with the distribution-free method, we consider a
worst case for the bootstrap method and the modified
sample quantile method. In the considered case, the
true model is the normal distribution but we mis-spe-
cify it to be the mixture normal distribution. These
TIs or tolerance limits were compared for this case.
The simulation results in Table 9 show that the two
proposed methods are still superior to the distribu-
tion-free method in the extreme cases.

5. Real data example

In this section, we use a mass flow controller (MFC)
example as a real data example to illustrate our meth-
ods and compare these approaches. An MFC is a
device used to measure and control the flow of liquids
and gases. The MFC data xj; j ¼ 1; :::; 232651 were
recorded every second of a producing process at the
Industrial Technology Research Institute of Taiwan.
There is a corresponding setting value vj for eachj:
The relative error of the data is defined as ej ¼
ðxj�vjÞ=vj: Engineers are required to determine
whether 99 percent of the relative error is within a
specified limit. Both the mean and standard deviation
of ej are crucial variables for determining whether the
process is stable. In this example, we inspected the

Figure 1. Absolute values of the difference between the
coverage probability and the nominal level for the case of p ¼
ð1=2; 1=2Þ; l ¼ ð0; 4Þ; and r ¼ ð1:2; 1:5Þ: Figure 2. Transformed data of the MFC.

Table 9. Coverage probabilities of ð0:99; 0:95Þ TI (10), when
the sample is sampling from the normal distribution.
Sample size Distribution free Bootstrap Sample quantile

k ¼ 1
20 0.021(0.002) 0.913(0.004) 0.934(0.004)
100 0.265(0.006) 0.969(0.003) 0.985(0.002)
200 0.601(0.007) 0.974(0.002) 0.976(0.002)
400 0.909(0.004) 0.978(0.002) 0.963(0.003)
1000 0.968(0.002) 0.981(0.002) 0.960(0.003)

k ¼ 2
20 0.019(0.002) — 0.594(0.007)
100 0.263(0.006) 0.851(0.005) 0.916(0.004)
200 0.603(0.007) 0.915(0.004) 0.964(0.003)
400 0.907(0.004) 0.942(0.003) 0.948(0.003)
1000 0.970(0.002) 0.967(0.003) 0.955(0.003)

k ¼ 3
20 0.022(0.002) — —
100 0.267(0.006) 0.762(0.006) 0.826(0.005)
200 0.592(0.007) 0.867(0.005) 0.909(0.004)
400 0.912(0.004) 0.929(0.003) 0.913(0.004)
1000 0.973(0.002) 0.963(0.003) 0.933(0.004)

k ¼ 4
20 0.017(0.002) — —
100 0.266(0.006) 0.691(0.007) 0.763(0.006)
200 0.599(0.007) 0.827(0.005) 0.872(0.004)
400 0.910(0.004) 0.898(0.004) 0.901(0.004)
1000 0.969(0.002) 0.958(0.003) 0.919(0.005)
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variable yi ¼ jEij for each minute, where

Ei ¼ 1
60

X60i
j¼60 i�1ð Þþ1

ej; i ¼ 1; :::; bN=60c

Ei is considered instead of ej because the value of ej
is occasionally very large at some time point, but the
production process can still run smoothly in this case.
To avoid obtaining a biased result due to these out-
liers, we use the average values Ei in the analyses.

Here we consider the log transformation hi ¼
ln ðyiÞ of yi instead of yi because hi can fit a mixture
normal distribution better than yi; and the histogram
of hi (Figure 2) shows that the mixture model is more
suitable than the normal model. To fit the mixture
normal distribution, we use the Akaike information
criterion (AIC) and the Bayesian information criter-
ion (BIC) to select the component number. The opti-
mal component numbers are both eight by the AIC
and BIC, respectively. We first obtain ð0:99; 0:95Þ
level TIs based on these two component numbers for
hi; and then take the exponential of them to obtain
TIs for yi: The ð0:99; 0:95Þ TIs are presented in
Table 10.

In addition, we use this data example to compare
these methods. We conduct a simulation study on this
data set with a sample size of 150, 200, and 250. We
adopt AIC and BIC to select models for the sampled
data. The AIC values decrease slowly when the com-
ponent number is greater than two, and they are very
close in most cases when the component numbers are
four and five. The BIC values reveal that the two-
component model is preferable. Therefore, we

calculate the coverage probabilities of these methods
with the component number from two to four. The
results are shown in Table 11.

6. Conclusions

In this study, we propose two methods for construct-
ing tolerance limits and TIs for the mixture normal
distribution and compare these methods with the con-
ventional distribution-free method and the TI for the
normal distribution. When the sample size is not
large, the coverage probability of the distribution-free
method is usually much lower than the nominal level.
The two proposed methods generally outperform the
distribution-free TI and the TI for the normal distri-
bution when the sample size is not large or the con-
tent b is large. The modified sample quantile method
has better coverage probability than the bootstrap
method in most simulation cases.
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Table 10. ð0:99; 0:95Þ TIs based on all MFC data.

Component
number Normal
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Appendix

Proof of Theorem 1. According to the definition of ~qr;
there exist positive integers r and s such that ~q1�b ¼ XðrÞ;
and ~qb ¼ XðsÞ: The coverage probability of L1�b is

P L1�b < q1�bð Þ

¼ P X rð Þ � q1�b þ z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 1� bð Þ
nf 2

ĥ
q̂1�b

� �
s0

@
1
A

¼
Xn
k¼r

n
k

� �
Fh q1�b þ z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 1� bð Þ
nf 2

ĥ
q̂1�b

� �
s0

@
1
A

2
4

3
5
k

1� Fh q1�b þ z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 1�bð Þ

nf 2
ĥ

q̂1�bð Þ
r !" #n�k

¼ 1�P YL � r � 1ð Þ;

[A.1]

where YL follows a binomial distributionBðn; pLÞ and

pL ¼ Fh q1�b þ z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 1� bð Þ=nf 2

ĥ
q̂1�b

� �q� �
:

Similarly, the coverage probability of Ub is

P Ub > qbð Þ

¼ P X sð Þ > qb � z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 1� bð Þ
nf 2

ĥ
q̂b
� �

s0
@

1
A

¼ 1�P X sð Þ � qb � z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 1� bð Þ
nf 2

ĥ
q̂b
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s0
@

1
A

¼ 1�

Xn

k¼s

n
k

� �
Fh qb � z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 1� bð Þ
nf 2

ĥ
q̂b
� �

s0
@

1
A

2
4

3
5
k

1� Fh qb � z1�a

ffiffiffiffiffiffiffiffiffiffiffiffi
b 1�bð Þ
nf 2

ĥ
q̂bð Þ

r !" #n�k�
¼ 1� 1� P YU � s� 1ð Þ½ �

¼ P YU � s� 1ð Þ;

[A.2]

where YU follows a binomial distribution Bðn; pUÞ and

pU ¼ Fh qb � z1�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 1� bð Þ=nf 2

ĥ
q̂b
� �q� �

:

Note that there exists an N such that pL�1�b and
pU�b for n>N: In addition, we can write the binomial dis-
tribution function as

P W � kð Þ ¼ I1�p n� k; kþ 1ð Þ

� 1
Beta n� k; kþ 1ð Þ

ð1�p

0

tn�k�1 1� tð Þkdt;

where W follows a binomial distribution Bðn; pÞ and
Betaða; bÞ � CðaÞCðbÞ=Cðaþ bÞ (Wadsworth 1960).
Moreover, by the equation Ipða; bÞ ¼ 1�I1�pðb; aÞ

(Monahan 2011), we can write

A:1ð Þ ¼ 1�I1�PL n� r þ 1; rð Þ
¼ IPL r; n� r þ 1ð Þ
�I1�b r; n� r þ 1ð Þ;

and

A:2ð Þ ¼ P YU � s� 1ð Þ
�I1�b n� sþ 1; sð Þ; [A.3]

when n>N:
To prove that [A.1] is greater than or equal to [A.2], we

show that either r þ s ¼ n or r þ s ¼ nþ 1: Based on the
facts

~q1�b ¼ inf tjFn tð Þ � 1� b
� �

¼ inf tj
Xn
i¼1

I Xi � tð Þ � n� nb

( )
¼ X rð Þ;

and

~qb ¼ inf tjFn tð Þ � b
� �

¼ inf tj
Xn
i¼1

I Xi � tð Þ � nb

( )
¼ X sð Þ;

we have r ¼ n�nb and s ¼ nb when nbis an integer.
Consequently, we have r þ s ¼ n:
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When nb is not an integer, we have r ¼ ½n�nb� þ 1 and
s ¼ ½nb� þ 1: As a result, we have r þ s ¼ nþ 1:

Thus, the term I1�bðn� sþ 1; sÞ in [A.3] is equal to
I1�bðr þ 1; n� rÞ when nbis an integer. Otherwise, it is
equal to I1�bðr; n� r þ 1Þ:

According to Olver et al. (2010), we have

I1�b r; n� r þ 1ð Þ ¼ I1�b r; n� rð Þ þ 1� bð Þrbn�r

n� rð ÞBeta r; n� rð Þ ;

and

I1�b r þ 1; n� rð Þ ¼ I1�b r; n� rð Þ� 1� bð Þrbn�r

rBeta r; n� rð Þ :

Therefore, we have I1�bðr; n� r þ 1Þ>I1�bðr þ 1; n� rÞ:
Thus, PðL1�b<q1�bÞ is greater than or equal to

Pðqb<UbÞ; when n is large enough.
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